

8位MTP微控制器

用户数据手册

声明

本资料内容,随产品的改进,会进行相应更新,恕不另行通知。使用本资料前请咨询我司销售人员,以保证本资料内容为最新版本。

请在本资料所记载的极限范围内使用本产品,因使用不当造成的损失,我司不承担其责任。

尽管本公司一向致力于提高产品质量与可靠性,但是半导体产品本身有一定的概率发生故障或错误工作,为防止因此类事故而造成的人身伤害或财产损失,请在使用过程中充分留心安全设计。

将本产品或者本资料出口海外时,应当遵守适用的进出口管制法律法规。

未经本公司许可,严禁以任何形式复制或转载本资料的部分或全部内容。

本资料测试数据仅供参考,实际数据以目标样机测试为准。

7 触摸键 8 位 MTP 类型单片机

目 录

1.		.符点	
		系统特性	
		系统功能	
	1.3. CF	PU 特点	7
	1.4. 封	付装信息	7
2.	系统概	[述和方框图	8
3.	引脚分	配及功能说明	g
		·理器 (CPU)	
		子储器	
	, ,	·.1.1. 程序存储器 (ROM)	
		1.2. 数据存储器 (SRAM)	
		·.1.3. 系统寄存器	
		4.1.3.1. 标志寄存器(<i>FLAG</i>), 地址 = 0x00	
		4.1.3.2. 杂项寄存器(<i>MISC</i>),地址 = 0x08	
	4.2. ₹	型址方式	
		・	
		- 3.1. 堆栈指针寄存器(<i>SP</i>),地址 = 0x02	
		程序选项 Code Options	
5 .		·和系统时钟	
•-	.,	可部高频振荡器和内部低频振荡	
		\部晶体振荡器	
		5.2.1. 外部晶体振荡器控制寄存器(<i>EOSCR</i>),地址 = 0x0A	
		5. 2.2 . 外部晶体振荡器的使用及注意事项	
		系统时钟与 IHRC 频率校准	
		5.3.1. 系统时钟	
		5.3.1.1. 时钟控制寄存器(<i>CLKMD</i>), 地址 = 0x03	18
	5	i.3.2. 频率校准	
		5.3.2.1. 特别声明	
	5	i.3.3. 系统时钟切换	20
6.	系统复	位与电压检测	21
	6.1. <u></u>	二电复位(POR)	21
		├部复位(PRSTB)	
		·····································	
		5.5.1. 低电压检测寄存器(<i>LVDC</i>), 地址 = 0x2D	
7.		作模式	
		↑	
		卓电模式(" <i>stopsys</i> ")	
		・ ロスク (
8.	-	\tag{\tag{\tag{\tag{\tag{\tag{\tag{	
٠.		¬断允许寄存器(<i>INTEN</i>),地址 = 0x04	
		中断请求寄存器(INTRQ),地址 = 0x05	
		中断边缘选择寄存器(<i>INTEGS</i>),地址 = 0x0C	
	J.J. 1		

7 触摸键 8 位 MTP 类型单片机

	8.4. 中断工作流程	30
	8.5. 中断的一般步骤	30
	8.6. 使用中断举例	31
9. I	/0 端口	. 32
	9.1. IO 相关寄存器	. 32
	9.1.1. 端口 A 数字输入启用寄存器(<i>PADIER</i>),地址 = 0x0D	32
	9.1.2. 端口 B 数字输入启用寄存器(<i>PBDIER</i>), 地址 = 0x0E	
	9.1.3. 端口 A 数据寄存器(<i>PA</i>),地址 = 0x10	
	9.1.4. 端口 A 控制寄存器(PAC), 地址 = 0x11	
	9.1.5. 端口 A 上拉控制寄存器(<i>PAPH</i>), 地址 = 0x12	
	9.1.6. 端口 A 下拉控制寄存器(PAPL), 地址 = 0x13	
	9.1.7. 端口 B 数据寄存器(<i>PB</i>),地址 = 0x14	
	9.1.8. 端口 B 控制寄存器(<i>PBC</i>), 地址 = 0x15	33
	9.1.9. 端口 B 上拉控制寄存器(<i>PBPH</i>), 地址 = 0x16	
	9.1.10. 端口 B 下拉控制寄存器(<i>PBPL</i>), 地址 = 0x17	
	9.2. IO 结构及功能	
	9.2.1. IO 引脚的结构	34
	9.2.2. IO 引脚的一般功能	34
	9.2.3. IO 使用与设定	35
10.	Timer / PWM 计数器	. 36
	10.1. 16 位计数器 (Timer16)	
	10.1.1. Timer16 介绍	
	10.1.2. Timer16 控制寄存器(<i>T16M</i>),地址 = 0x06	
	10.1.3. Timer16 溢出时间	
	10.2. 8 位 PWM 计数器(Timer2,Timer3)	38
	10.2.1. Timer2、Timer3 相关寄存器	
	10.2.1.1. Timer2 分频寄存器(<i>TM2S</i>),地址 = 0x1E	39
	10.2.1.2. Timer2 控制寄存器(<i>TM2C</i>),地址 = 0x1C	
	10.2.1.3. Timer2 计数寄存器(<i>TM2CT</i>),地址 = 0x1D	
	10.2.1.4. Timer2 上限寄存器(<i>TM2B</i>), 地址 = 0x1F	
	10.2.1.5. Timer3 计数寄存器(TM3CT), 地址 = 0x33	40
	10.2.1.6. Timer3 分频寄存器(<i>TM3S</i>),地址= 0x34	. 41
	10.2.1.7. Timer3 上限寄存器(<i>TM3B</i>),地址 = 0x35	
	10.2.1.8. Timer3 控制寄存器(<i>TM3C</i>),地址 = 0x32	41
	10.2.2. 使用 Timer2 产生定期波形	
	10.2.3. 使用 Timer2 产生 8 位 PWM 波形	43
	10.2.4. 使用 Timer2 产生 6 位 PWM 波形	44
11.	特殊功能	. 45
	11.1. 比较器	
	11.1.1. 比较器控制寄存器(GPCC), 地址= 0x18	46
	11.1.2. 比较器选择寄存器(<i>GPCS</i>),地址 = 0x19	
	11.1.3. 内部参考电压 (V _{internal R})	
	11.1.4. 使用比较器	
	11.1.5. 使用比较器和 Bandgap 参考电压生成器	50
	11.2. 触摸功能	
	11.2.1. 触摸相关寄存器	53
	11.2.1.1. 触摸选项寄存器(TS), 地址 = 0x20	53
	11.2.1.2. 触摸充电控制寄存器(TCC), 地址 = 0x21	53

7 触摸键 8 位 MTP 类型单片机

	11.2.1.3. 触摸按键使能 2 寄存器 (TKE2), 地址 = 0x22	54
	11.2.1.4. 触摸按键使能 1 寄存器 (TKE1), 地址 = 0x24	54
	11.2.1.5. 触摸按键充电计数高位寄存器(TKCH),地址= 0x2B	54
	11.2.1.6. 触摸按键充电计数低位寄存器(TKCL),地址= 0x2C	54
12.	仿真注意事项	55
13.	烧录方法	56
	13.1. 普通烧录模式	56
	13.2. 限压烧录模式	56
	13.3. 在板烧录(On-Board Writing)	57
14.	直流交流电气特性	58
	14.1. 绝对最大值	58
	14.2. 器件电气特性	58
	14.3. IHRC 频率与 VDD 关系曲线图(校准到 16MHz)	60
	14.4. ILRC 频率与 VDD 关系曲线图	60
	14.5. IHRC 频率与温度关系曲线图(校准到 16MHz)	
	14.6. ILRC 频率与温度关系曲线图	
	14.7. 工作电流与 VDD、系统时钟 CLK = IHRC/n 关系曲线图	
	14.8. 工作电流与 VDD、系统时钟 CLK = ILRC/n 关系曲线图	
	14.9. 工作电流与 VDD、系统时钟 CLK = 32KHz EOSC / n 关系曲线图	
	14.10. 工作电流与 VDD、系统时钟 CLK = 1MHz EOSC / n 关系曲线图	
	14.11. 工作电流与 VDD、系统时钟 CLK = 4MHz EOSC / n 关系曲线图	
	14.12. IO 引脚上拉阻抗曲线图	
	14.13. IO 引脚下拉阻抗曲线图	
	14.14. IO 引脚输出驱动电流(I _{OH}) 和灌电流 (I _{OL})曲线图	
	14.15. IO 引脚输入高/低阈值电压(V _{IH} /V _{IL})曲线图	
	14.16. 掉电模式消耗电流(I _{PD})与省电模式消耗电流(I _{PS})曲线图	
15.	指令	
	15.1. 指令表	68

修订历史:

修订	日期	描 述
0.00	2019/08/23	初版

1. 单片机特点

1.1. 系统特性

高抗干扰(High EFT)系列 特别适用于 AC 电源供电的、阻容降压电路的、需要较强抗干扰能力的, 或有高 EFT 安规测试要求(±4KV)的产品

◆ 工作温度范围: -40°C~85°C

ESD > 8 KV

产品不良率保证低于 500 PPM。

◆ 产品寿命保证在 5 年以上(焊接温度<260℃)。

1.2. 系统功能

2KW MTP 程序空间(可编程 1000 次)

128 Bytes 数据空间

最大 7 IO 引脚可选择为触摸按键

一个硬件 16 位定时器

两个 8 位定时器可产生 6/7/8-bit PWM 波形

一个硬件比较器

最大 8 IO 引脚带可选择的上拉/下拉电阻

每个 IO 引脚都可设定为唤醒功能

Bandgap 电路提供 1.20V 参考电压

时钟源: IHRC、ILRC 和 EOSC (XTAL)

8 级可选择的 LVR(Low Voltage Reset)复位电压从 1.8V 到 4.5V

16 级可选择的 LVD (Low Voltage Detect)检测电压从 1.8V 到 4.5V

三个可选择的外部中断引脚

1.3. CPU 特点

8 位高性能精简指令集 CPU

86条高效的指令

绝大部分指令都是单周期(1T)指令

可程序设定的堆栈指针和堆栈深度

数据存取支持直接和间接寻址模式

用数据存储器即可当作间接寻址模式的数据指针(index pointer)

寄存器地址空间、数据存储空间、MTP 程序空间三者互相独立

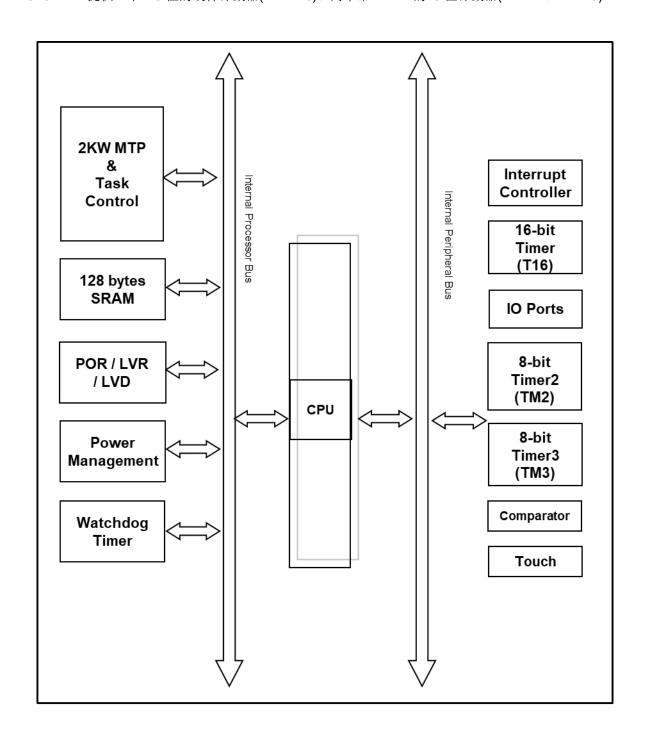
1.4. 封装信息

JZ8M117-S08A: SOP8A

(150mil)

JZ8M117-S08B: SOP8B

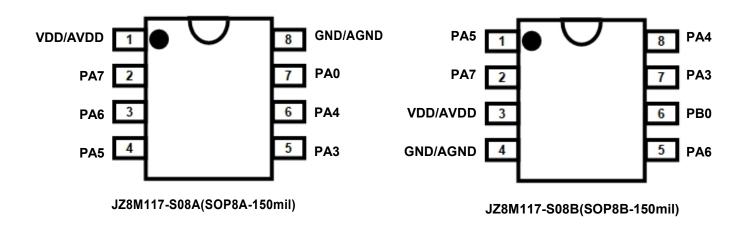
(150mil)


2. 系统概述和方框图

JZ8M117 是一个 IO 类型,静态 MTP 单片机。它运用 RISC 的架构基础使大部分指令的执行周期都是单周期, 只有少部分间接寻址的指令需要两个指令周期。

JZ8M117 内置 2KW MTP 程序存储器以及 128 字节数据存储器。

JZ8M117 内置最多 7 个按键触摸控制器以及一个硬件比较器。


JZ8M117 提供一个 16 位的硬件计数器(Timer16)、两个带 PWM 的 8 位计数器(Timer2、Timer3)。

3. 引脚分配及功能说明

引脚		输入	/输出			特殊功能						
名称	1/0	上拉	下拉	唤醒	晶振	比较器	PWM	触摸	CS 电容	外部 中断	外部 复位	烧录
PA0	√	√	√	√		СО	TM2PWM	TK7		INT0		
PA3	√	√	√	√		CIN-	TM2PWM	TK5				√
PA4	√	√	√	√		CIN+ CIN-	TM3PWM	TK6				
PA5	√	√	√	√			TM3PWM	TK9		INT0A	√	1
PA6	√	√	√	√	√			TK8				1
PA7	√	√	√	√	1			TK10	V			
PB0	√	√	√	√			TM2PWM	TK11		INT1		
PB7	√	√	√	√		CIN-	TM3PWM	TK4	V			
VDD / AVDD												1
GND / AGND												√
注意	 1. 所有 I/O 引脚都具有:施密特触发器输入; CMOS 电压基准位。 2. 当某引脚作为 PWM 输出端口时,其 IO 功能自动停用。 3. 当 PA5 引脚设定成输入时,对于需要高抗干扰能力的系统,请串接 33Ω 电阻。 4. VDD 是 IC 电源,AVDD 为模拟正电源。在 IC 内部,AVDD 与 VDD 连在一起(double bonding),而外部为相同引脚。 											

5. GND 是 IC 接地引脚,而 AGND 是模拟接地引脚。在 IC 内部,AGND 与 GND 连在一起(double

bonding),而外部为相同引脚。

4. 中央处理器 (CPU)

4.1. 存储器

4.1.1. 程序存储器 (ROM)

JZ8M117 的程序存储器记忆体是 MTP(可多次编程),用来存放数据(包含:数据、表格和中断入口)和要执行的程序指令。JZ8M117 的程序存储器容量为 2KW,如表 1 所示。

复位之后,程序从 0x000 开始 (通常是 goto FPPA0),中断入口在 0x010。

MTP 存储器从地址"0x7E0 to 0x7FF"供系统使用,从"0x001~0x00F"和"0x011~0x7DF"地址空间是用户的程序空间。

MTP 程序存储器最后 32 个地址空间是被保留给系统使用,如:校验码,序列号等。

地址	功能
0x000	FPP0 复位 - goto 指令
0x001	用户程序区
•	•
0x00F	用户程序区
0x010	中断入口地址
0x011	用户程序区
•	•
0x7DF	用户程序区
0x7E0	系统使用
•	•
0x7FF	系统使用

表 1: JZ8M117 程序存储器结构

4.1.2 数据存储器 (SRAM)

JZ8M117 的数据存储器共有 128 字节,数据存取可以是字节或位的操作。除了存储数据外,数据存储器还可以担任间接存取方式的数据指针,以及堆栈存储器。

7 触摸键 8 位 MTP 类型单片机

4.1.3. 系统寄存器

JZ8M117 的寄存器地址空间与数据存储空间、MTP 程序空间三者互相独立。以下是 JZ8M117 的各 寄存器存放地址及简要描述:

	+0	+1	+2	+3	+4	+5	+6	+7
0x00	FLAG	-	SP	CLKMD	INTEN	INTRQ	T16M	-
0x08	MISC	-	EOSCR	-	INTEGS	PADIER	PBDIER	-
0x10	PA	PAC	PAPH	PAPL	PB	PBC	PBPH	PBPL
0x18	GPCC	GPCS	-	-	TM2C	TM2CT	TM2S	TM2B
0x20	TS	TCC	TKE2	-	TKE1	-	-	-
0x28	TPS2	-	-	TKCH	TKCL	LVDC	-	-
0x30	-	-	ТМ3С	тмзст	TM3S	ТМ3В	-	-

FLAG: 标志寄存器 SP: 堆栈指针寄存器

CLKMD: 时钟控制寄存器

EOSCR: 外部晶体振荡器控制寄存器

INTEN:中断允许寄存器
INTRQ:中断请求寄存器
INTEGS:中断缘选择寄存器

MISC: 杂项寄存器

PA: 端口 A 数据寄存器 PAC: 端口 A 控制寄存器

PAPH: 端口 A 上拉控制寄存器 PAPL: 端口 A 下拉控制寄存器

PADIER: 端口 A 数字输入启用寄存器

PB: 端口 B 数据寄存器 PBC: 端口 B 控制寄存器

PBPH: 端口 B 上拉控制寄存器

PBPL: 端口 B 下拉控制寄存器

PBDIER: 端口 B 数字输入启用寄存器

GPCC: 比较器控制寄存器 **GPCS**: 比较器选择寄存器 **T16M**: Timer16 控制寄存器

TM2C / TM3C: Timer2 / Timer3 控制寄存器
TM2CT / TM3CT: Timer2 / Timer3 计数寄存器
TM2S / TM3S: Timer2 / Timer3 分频寄存器
TM2B / TM3B: Timer2 / Timer3 上限寄存器

TS: 触摸选项寄存器

TCC: 触摸充电控制寄存器

TKE1/TKE2: 触摸按键使能寄存器

TKCH / TKCL: 触摸按键充电计数高/低位寄存器

LVDC: 低电压检测寄存器 TPS2: 触摸参数设置寄存器

4.1.3.1. 标志寄存器(FLAG), 地址 = 0x00

位	初始值	读/写	描述
7 – 4	-	-	保留。这 4 个位读值为"1"。
3	-	读/写	OV (溢出标志)。当数学运算溢出时,这一位会设置为 1。
2	-	读/写	AC (辅助进位标志)。两个条件下,此位设置为 1: (1)是进行低半字节加法运算产生进位 (2)减法运算时,低半字节向高半字节借位。
1	-	读/写	C (进位标志)。有两个条件下,此位设置为 1: (1)加法运算产生进位 (2)减法运算有借位。进位标志还受带进位标志的 shift 指令影响。
0	-	读/写	Z (零)。此位将被设置为 1,当算术或逻辑运算的结果是 0;否则将被清零。

4.1.3.2. 杂项寄存器(MISC),地址 = 0x08

位	初始值	读/写	描 述			
7 - 6	-	-	保留。			
5	0	只写	唤醒时间 0 / 1 : 3000 ILRC (Slow) / 45 ILRC (Fast)			
4 - 3	-	-	保留。			
2	0	只写	停用 LVR 功能: 0 / 1: 启用 / 停用			
1 – 0	00	只写	看门狗时钟超时时间设定: 00: 8K 个 ILRC 时钟周期 01: 16K 个 ILRC 时钟周期 10: 64K 个 ILRC 时钟周期 11: 256K 个 ILRC 时钟周期			

4.2. 寻址方式

数据存储器的间接存取方式,是以数据存储器当作数据指针来存取数据字节。所有的数据存储器,都可以拿来当作数据指针,这可以让单片机的资源利用率最大化。JZ8M117 的数据存储器 128 字节全部都可以用间接方式来存取。

位寻址只能定义在 RAM 区的 0x00 到 0x3F 空间。

4.3. 堆栈

堆栈存储器是定义在数据储存器里。堆栈存储器的堆栈指针是定义在堆栈指针寄存器;堆栈存储器深度 是由使用者定义的。用户可以依其程序需求来订定所需要堆栈存储器的大小,以保持最大的弹性。

4.3.1. 堆栈指针寄存器(SP),地址 = 0x02

位	初始值	读/写	描 述
7 0		造/官	堆栈指针寄存器。读出当前堆栈指针,或写入以改变堆栈指针。请注意 0 位必须维持为 0
7-0	-	读/写	。因程序计数器是 16 位。

4.4. 程序选项 Code Options

选项	选择	描述
Co o unito d	Enable(默认)	MTP 内容加密 7/8 words
Security	Disable	MTP 内容不加密,程序可被读回
	4.0V	选择 LVR = 4.0V
	3.5V	选择 LVR = 3.5V
	3.0V	选择 LVR = 3.0V
LVR	2.7V	选择 LVR = 2.7V
LVIX	2.5V(默认)	选择 LVR = 2.5V
	2.2V	选择 LVR = 2.2V
	2.0V	选择 LVR = 2.0V
	1.8V	选择 LVR = 1.8V
PA3_PA4_Drive	Strong	PA3 & PA4 的驱动电流/灌电流为 strong
TAO_TA4_BIVE	Normal(默认)	PA3 & PA4 的驱动电流/灌电流为 normal
	16MHZ(默认)	当 <i>TM2C</i> [7:4]= 0010, TM2 时钟源= IHRC = 16MHZ
TM. C		当 <i>TM3C</i> [7:4]= 0010, TM3 时钟源= IHRC = 16MHZ
TMx_Source	32MHZ	当 <i>TM2C</i> [7:4]= 0010, TM2 时钟源 = IHRC*2 = 32MHZ 当 <i>TM3C</i> [7:4]= 0010, TM3 时钟源 = IHRC*2 = 32MHZ
		(仿真器不支持)
	0 D:(Wh)))	当 <i>TM2</i> S.7=1, TM2 是 6 位 PWM
	6 Bit(默认)	当 <i>TM3S</i> .7=1, TM3 是 6 位 PWM
TMx_Bit		当 TM2S.7=1, TM2 是 7 位 PWM
	7 Bit	当 <i>TM3</i> S.7=1, TM3 是 7 位 PWM
		(仿真器不支持)
	All Edge(默认)	上升缘和下降缘都触发中断
Comparator Edge	Rising Edge	仅上升缘触发中断
	Falling Edge	仅下降缘触发中断
CDC DIAM	Disable(默认)	比较器和 PWM 相互独立
GPC_PWM	Enable	比较器输出控制 PWM 输出(仿真器不支持)
Interrupt Cree	PA.0(默认)	选择 INTEN/INTRQ.Bit0 为 PA.0
Interrupt Src0	PA.5	选择 INTEN/INTRQ.Bit0 为 PA.5 (仿真器不支持)
	PA7(默认)	配置引脚 PA7/CS 为触摸的 CS 脚
CS_Sel	PB7	配置引脚 PB7/CS 为触摸的 CS 脚
	Disable	配置引脚 PA7/PB7/CS 为正常的 IO 脚
FAAL	Disable	停用 EMI 优选项
EMI	Enable(默认)	系统时钟会轻微调整以获得更好的 EMI 性能
l		•

5. 振荡器和系统时钟

JZ8M117 提供 3 个振荡器电路:外部晶体振荡器(EOSC)、内部高频 RC 振荡器(IHRC)、内部低频 RC 振荡器(ILRC)。

这3个振荡器可以分别用寄存器 EOSCR.7, CLKMD.4 与 CLKMD.2 启用或停用,使用者可以选择这3个振荡器之一作为系统时钟源,并透过 CLKMD 寄存器来改变系统时钟频率,以满足不同的系统应用。

振荡器硬件	启用或停用选择
EOSC	EOSCR.7
IHRC	CLKMD.4
ILRC	CLKMD.2

表 2: JZ8M117 提供 3 个振荡器电路

5.1.内部高频振荡器和内部低频振荡

IHRC、ILRC 的频率会因工厂生产、电源电压和温度的变化而变化,请参阅 IHRC、ILRC 频率和 VDD、温度的测量图表。

JZ8M117 烧录工具提供 IHRC 频率校准(通常校准到 16MHz)功能,以此来消除工厂生产引起的频率漂移。 ILRC 没有校准操作,对于需要精准定时的应用请不要使用 ILRC 的时钟当作参考时间。

5.2.外部晶体振荡器

外部晶体振荡器的工作频率范围可以从 32KHz 至 4MHz, JZ8M117 不支持频率在 4MHz 以上的振荡器。图 1 显示了使用外部晶体振荡器的的硬件连接。

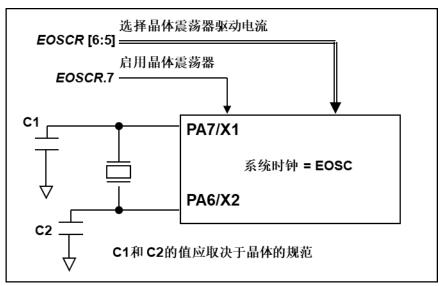


图 1: 外部晶体振荡器的的硬件连接

521. 外部晶体振荡器控制寄存器(EOSCR), 地址 = 0x0A

位	初始值	读/写	描 述		
7	0	只写	使能外部晶体振荡器。0/1: 停用/使能		
6 – 5	00	只写	晶体振荡器的选择。 00: 保留 01: 低驱动电流。适用于较低频率晶体,例如: 32KHz 10: 中驱动电流。适用于中等频率晶体,例如: 1MHz 11: 高驱动电流。适用于较高频率晶体,例如: 4MHz		
4 – 0	-	-	保留。请设为 0。		

5.22. 外部晶体振荡器的使用及注意事项

除了晶振的选择外,外部电容器和寄存器 *EOSCR* 相关选项也应该适度调整以求得有良好的正弦波。 *EOSCR*.7 是用开启晶体振荡器硬件模块,*EOSCR*.6 和 *EOSCR*.5 用于设置振荡器不同的驱动电流,以满足晶体振荡器不同频率的的要求。

表 3 显示了不同的晶体振荡器 C1 和 C2 的推荐值,同时也显示其对应条件下测量的起振时间。由于晶体或谐振器有其自身的特点,不同类型的晶体或谐振器的启动时间可能会略有不同,请参考其规格并选择恰当的 C1 和 C2 电容值。

频率	C1	C2	起振时间	条件
4MHz	4.7pF	4.7pF	6ms	(EOSCR[6:5]=11)
1MHz	10pF	10pF	11ms	(EOSCR[6:5]=10)
32KHz	22pF	22pF	450ms	(EOSCR[6:5]=01)

表 3: 晶体振荡器 C1 和 C2 推荐值

使用晶振时 PA7 和 PA6 的配置:

- (1) PA7 和 PA6 设定为输入;
- (2) PA7 和 PA6 内部上拉电阻设为关闭;
- (3) 用 PADIER 寄存器将 PA6 和 PA7 设为模拟输入,防止漏电。

注意: 请务必仔细阅读《PMC-APN013》之内容,并据此合理使用晶体振荡器。如因用户的晶体振荡器的 质量不佳、使用条件不合理、PCB 清洁剂残留漏电、或是 PCB 板布局不合理等等用户原因,造成的慢起振或不起振情况,我司不对此负责。

使用晶体振荡器时,使用者必须特别注意振荡器的稳定时间。稳定时间将取决于振荡器频率、晶型、外部 电容和电源电压。在系统时钟切换到晶体振荡器之前,使用者必须确保晶体振荡器是稳定的,相关参考程序如 下所示:


```
FPPA0 (void)
void
{
       .ADJUST_IC SYSCLK=IHRC/16, IHRC=16MHz, VDD=5V
                                     // EOSCR = 0b110_00000;
       $
           EOSCR Enable, 4Mhz;
                                     // T16M.Bit13 由 0->1 時,INTRQ.T16 => 1
           T16M
                    EOSC, /1, BIT13;
                                     //假设此时晶体振荡器已稳定
       WORD
                count
                            0;
       stt16
                count:
       Intrq.T16 =
                    0;
       while (! Intrq.T16) NULL;
                                    // 从 0x0000 算到 0x2000, 然后设置 INTRQ.T16
       clkmd=0xB4;
                                    // 切换系统时钟到 EOSC;
       clkmd.4 = 0;
                                     // 关闭 IHRC
}
```

需要注意,在进入掉电模式前,为保证系统不会被误唤醒,要确保外部晶体振荡器已完全关闭。

5.3. 系统时钟与IHRC 频率校准

5.3.1. 系统时钟

系统时钟的时钟源有 EOSC, IHRC 和 ILRC, JZ8M117 的时钟系统的硬件框图如图 2 所示。

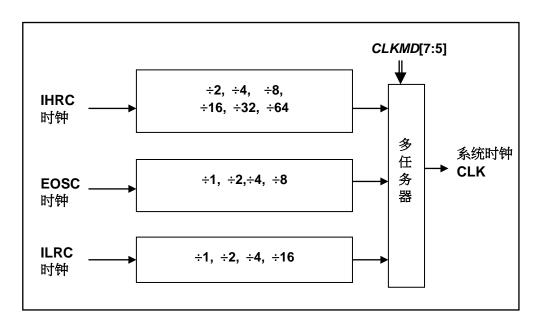


图 2: 系统时钟源选择

5.3.1.1. 时钟控制寄存器(CLKMD), 地址 = 0x03

位	初始值	读/写	描 述				
			系统时钟选择				
			类型 0, <i>CLKMD</i> [3]=0	类型 1, <i>CLKMD</i> [3]=1			
			000: IHRC/4	000: IHRC/16			
			001: IHRC/2	001: IHRC/8			
		选/官	010: 保留	010: ILRC/16(仿真器不支持)			
7 – 5	111	读/写	011: EOSC/4	011: IHRC/32			
			100: EOSC/2	100: IHRC/64			
			101: EOSC	101: EOSC/8			
			110: ILRC/4	110: ILRC/2			
			111: ILRC (默认)	其他:保留			
4	1	读/写	内部高频 RC 振荡器功能。 0/1: 停用/启用				
)共 <i>1</i> 官	时钟类型选择。这个位是用来选择位 7~位 5	的时钟类型。			
3	0	读/写	0/1: 类型 0/类型 1				
_		・ キャラ	内部低频 RC 振荡器功能。0/1: 停用/启用				
2	1	读/写	当内部低频 RC 振荡器功能停用时,看门狗功	能同时被关闭。			
1	1	读/写	看门狗功能。 0/1: 停用/启用				
0	0	读/写	引脚 PA5/PRSTB 功能。0 / 1: PA5 / PRSTB				

5.32. 频率校准

IHRC 校准的功能是在用户编译程序时序做选择,校准命令以及校准选项将自动插入到用户程序中。校准命令如下所示:

.ADJUST_IC SYSCLK=IHRC/(p1), IHRC=(p2)MHz, VDD=(p3)V;

p1 = 2, 4, 8, 16, 32; 以提供不同的系统时钟。

p2 =16~18;校准芯片到不同的频率,通常选择 16MHz。

p3 =2.2~5.5;根据不同的电源电压校准芯片。

通常情况下,ADJUST_IC 是开机后的第一个命令,用以设定系统的工作频率。IHRC 频率校准的程序只在将程序代码写入 MTP 存储器的时候执行一次,此后不会再被执行。

如果 IHRC 校准选择不同的选项,开机后的系统状态也是不同的。IHRC 频率校准以及系统时钟的选项,如表 4 所示:

SYSCLK	CLKMD	IHRCR	描述
o Set IHRC / 2	= 34h (IHRC / 2)	有校准	IHRC 校准到 16MHz, CLK=8MHz (IHRC/2)
○ Set IHRC / 4	= 14h (IHRC / 4)	有校准	IHRC 校准到 16MHz, CLK=4MHz (IHRC/4)
○ Set IHRC / 8	= 3Ch (IHRC / 8)	有校准	IHRC 校准到 16MHz, CLK=2MHz (IHRC/8)
o Set IHRC / 16	= 1Ch (IHRC / 16)	有校准	IHRC 校准到 16MHz, CLK=1MHz (IHRC/16)
o Set IHRC / 32	= 7Ch (IHRC / 32)	有校准	IHRC 校准到 16MHz, CLK=0.5MHz (IHRC/32)
∘ Set ILRC	= E4h (ILRC / 1)	有校准	IHRC 校准到 16MHz, CLK=ILRC
o Disable	没改变	没改变	IHRC 不校准, CLK 没改变

表 4: IHRC 频率校准选项

下面显示在不同的选项下, JZ8M117 不同的状态:

(1) .ADJUST_IC SYSCLK=IHRC/2, IHRC=16MHz, V_{DD}=5V

开机后, CLKMD = 0x34:

- a. IHRC 的校准频率为 16MHz@VDD=5V, 启用 IHRC 的硬件模块
- b. 系统时钟 = IHRC/2 = 8MHz
- c. 看门狗被停用,启用 ILRC, PA5 是在输入模式

(2) .ADJUST_IC SYSCLK=IHRC/8, IHRC=16MHz, VDD=2.5V

开机后, CLKMD = 0x3C:

- a. IHRC 的校准频率为 16MHz@VDD=2.5V, 启用 IHRC 的硬件模块
- b. 系统时钟 = IHRC/8 = 2MHz
- c. 看门狗被停用,启用 ILRC, PA5 是在输入模式

(3) .ADJUST_IC SYSCLK=ILRC, IHRC=16MHz, V_{DD}=5V

开机后, CLKMD = 0xE4:

- a. IHRC 的校准频率为 16MHz@VDD=5V, 停用 IHRC 的硬件模块
- b. 系统时钟 = ILRC
- c. 看门狗被停用, 启用 ILRC, PA5 是在输入模式

(4) .ADJUST_IC DISABLE

开机后,CLKMD 寄存器没有改变(没任何动作):

- a. IHRC 不校准并且 IHRC 模块停用
- b. 系统时钟 = ILRC 或 IHRC/64
- c. 看门狗被启用,启用 ILRC,PA5 是在输入模式

the Contract of the Contract o

JZ8M117

7 触摸键 8 位 MTP 类型单片机

5.3.2.1. 特别声明

- (1) IHRC 的校正操作是在 IC 烧录时进行的。
- (2) IC 塑封材料(不论是封装用还是 COB 用的黑胶)的特性会对 IHRC 的频率有一定影响。如果用户在 IC 盖上 塑封材料前进行烧录,然后再封上塑封材料,则可能造成 IHRC 的特性偏移超出规格的现象,正常情况下频率会变慢一些。
- (3) 上述问题通常发生在用户使用 COB 封装或是委托我司进行晶圆代烧(QTP)时。此情况下我司将不对频率超出 规格的情况负责。
- (4) 用户可按自身经验进行一些补偿性调整,例如把 IHRC 的目标频率调高 0.5%-1%左右,令封装后 IC 的 IHRC 频率更接近目标值。

5.3.3. 系统时钟切换

IHRC 校准后,透过 *CLKMD* 寄存器的设定,JZ8M117 系统时钟可以随意在 IHRC,ILRC 和 EOSC 之间切换。**但必须注意,不可在切换系统时钟的同时把原时钟源关闭**。例如:从 A 时钟源切换到 B 时钟源时,应该先把系统时钟源切换到B,然后再关闭A时钟源。请参阅IDE:"使用手册"->"IC介绍"->"缓存器介绍"->"*CLKMD*"。

例 1: 系统时钟从 ILRC 切换到 IHRC/2

```
      ...
      // 系统时钟为 ILRC

      CLKMD.4
      = 1;
      // 先打开 IHRC,可以提高抗干扰能力

      CLKMD
      = 0x34;
      // 切换为 IHRC/2, ILRC 不能在这里停用

      // CLKMD.2
      = 0;
      // 假如需要,ILRC 可以在这里停用
```

•••

例 2: 系统时钟从 IHRC/2 切换到 EOSC

```
... // 系统时钟为 IHRC/2

CLKMD = 0XB0; // 切换为 EOSC, IHRC 不能在这里停用

CLKMD.4 = 0; // IHRC 可以在这里停用
```

...

例 3: 系统时钟从 IHRC/2 切换到 IHRC/4

... // 系统时钟为 IHRC/2, ILRC 为启用 **CLKMD** = **0X14;** // 切换为 IHRC/4

...

例 4: 系统可能当机,如果同时切换时钟和关闭原来的振荡器

... // 系统时钟为 ILRC CLKMD = 0x30; // 不能从 ILRC 切换到 IHRC/2,同时又关闭 ILRC 振荡器

6. 系统复位与电压检测

引起 JZ8M117 复位的原因有四种:上电复位、LVR 复位、看门狗超时溢出复位和 PRSTB 引脚复位。发生 复位后,系统会重新启动,程序计数器会跳跃到地址 0x000, JZ8M117 的所有寄存器将被设置为默认值。

6.1. 上电复位(POR)

开机时,POR(Power On Reset)是用于复位 JZ8M117,其时序图如图 3 所示。用户必须确保上电后电源电压稳定。

发生上电复位时, JZ8M117 数据存储器的值处于不确定的状态。

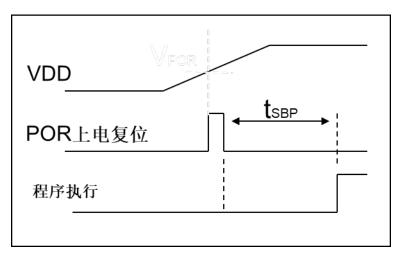
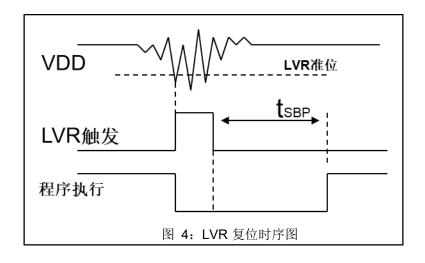



图 3: 上电复位时序图

6.2. 低电压复位(LVR)

若 VDD 下降到低于 LVR(Low Voltage Reset)电压水平,系统会发生 LVR 复位,其时序图如图 4。当 LVR 复位时,JZ8M117 数据存储器的值处于不确定的状态。

LVR 水平的选择在程序编译时进行。使用者必须结合单片机工作频率和电源电压来选择 LVR,才能让单片机稳定工作。下面是工作频率、电源电压和 LVR 水平设定的建议:

系统时钟	VDD	LVR
8MHz	≧ 3.5V	≧3.5V
4MHz	≧ 2.5V	≧2.5V
2MHz	≧ 2.2V	≧2.2V

表 5: LVR 设置参考,与系统频率、VDD 之间的关系

- (1)只有当 IC 正常起动后,设定 LVR (1.8V~4.0V) 才会有效。
- (2)可以设定寄存器 MISC.2 为 1 将 LVR 关闭,但此时应确保 V_{DD}在最低工作电压以上,否则 IC 可能工作不正常。
- (3) 在省电模式 stopexe 和掉电模式 stopsys 下, LVR 功能无效。

	杂项寄存器(<i>MISC</i>),地址 = 0x08					
位	初始值	读/写	描 述			
7 – 6	-	-	保留。			
5	0	只写	唤醒时间。			
4 - 3	-	-	保留。			
2	0	只写	停用 LVR 功能。0 / 1: 启用 / 停用			
1 – 0	00	只写	停用 LVR 切能。 0 / 1:			

6.3. 看门狗超时溢出复位

看门狗是一个计数器,其时钟源来自 ILRC,所以当 ILRC 关闭时,看门狗也会失效。ILRC 的频率有可能因为工厂制造的变化,电源电压和工作温度而漂移很多,使用者必须预留安全操作范围。

为确保看门狗在超时溢出之前被清零,在安全时间内,可以用指令 wdreset 清零看门狗。在上电复位 (POR) 或任何时候使用 wdreset 指令,看门狗都会被清零。

当看门狗超时溢出时,JZ8M117 将复位并重新运行程序,其复位时序图如图 5 所示。发生 WDT 复位时,JZ8M117 数据存储器的值将被保留。

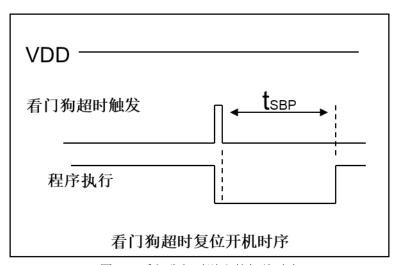


图 5: 看门狗超时溢出的相关时序

利用寄存器 MISC[1:0]可选择四种不同的看门狗超时时间,利用 CLKMD.1 可以选择将看门狗功能停用。

	时钟控制寄存器(<i>CLKMD</i>),地址 = 0x03					
位	初始值	读/写	描述			
7 - 5	111	读/写	系统时钟选择			
4	1	读/写	内部高频 RC 振荡器功能。 0/1: 停用/启用			
3	0	读/写	时钟类型选择			
	1	4	读/写	内部低频 RC 振荡器功能。 0/1: 停用/启用		
2		1	当 ILRC 关闭时,看门狗也会失效			
1	1	读/写	看门狗功能。 0/1: 停用/启用			
0	0	读/写	引脚 PA5/PRSTB 功能。0 / 1: PA5 / PRSTB			

6.4. 外部复位(PRSTB)

JZ8M117 支持外部复位功能, 其外部复位引脚与 PA5 共享同一个 IO 端口。使用外部复位功能需要:

- (1) 设定 PA5 为输入;
- (2) 设定 CLKMD.0=1, 使 PA5 为外部 PRSTB 输入脚位。

在外部复位引脚为高电平时,系统处于正常工作状态;一旦复位引脚检测到低电平,系统即发生复位。PRSTB 复位时序图如图 6 所示。

当发生 PRSTB 复位时, JZ8M117 数据存储器的值将被保留。

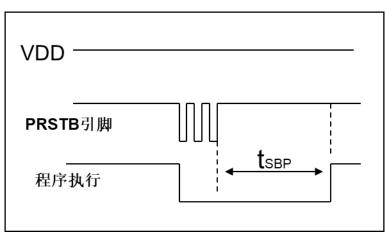


图 6: 外部引脚复位的相关时序

6.5. 系统电压检测器 - LVD

JZ8M117 内置一个 VDD 电压检测器,用于快速检测芯片的工作电压水平。

通过寄存器 *LVDC*[7:4],用户可以从 1.8V 到 4.5V 共 16 个电平中选择一个来与 VDD 电压进行比较。通过读取 *LVDC*.0 的比较结果,用户就可以监控系统电源是否在预设电平之内。

6.5.1. 低电压检测寄存器(LVDC), 地址 = 0x2D

位	初始值	读/写		描述	
7 - 4	0000	WO	LVD 电压水平选择 0000: 1.8V 0001: 1.9V 0010: 2.0V 0011: 2.1V 0100: 2.2V 0101: 2.3V 0110: 2.4V 0111: 2.5V	1000 : 2.75V 1001 : 3.0V 1010 : 3.15V 1011 : 3.3V 1100 : 3.5V 1101 : 3.75V 1110 : 4.0V 1111 : 4.5V	
3 - 1	-	-	保留		
0	-	RO	VDD 电压检测结果 0: VDD > LVD 1: VDD < LVD		

7 触摸键 8 位 MTP 类型单片机

7. 系统工作模式

JZ8M117 有三个由硬件定义的操作模式,分别为:

- (1) 正常工作模式
- (2) 电源省电模式
- (3) 掉电模式

正常工作模式是所有功能都正常运行的状态;

省电模式(stopexe)是在降低工作电流而且 CPU 保持在随时可以继续工作的

状态; 掉电模式(stopsys)是用来深度的节省电力。

省电模式适合在偶尔需要唤醒的系统工作,掉电模式是在非常低消耗功率且很少需要唤醒的系统中使用。

7.1. 省电模式("stopexe")

使用 *stopexe* 指令进入省电模式,只有系统时钟被停用,其余所有的振荡器模块都继续工作。所以只有 CPU 是停止执行指令。输入引脚切换引起的系统唤醒可视为单片机继续正常的运行。

省电模式的详细信息如下所示:

- (1) IHRC 和振荡器模块:没有变化。如果它被启用,它仍然继续保持活跃。
- (2) ILRC 振荡器模块:必须保持启用,唤醒时需要靠 ILRC 启动。
- (3) 系统时钟停用,因此, CPU 停止执行。
- (4) MTP 存储器被关闭。
- (5) Timer 计数器: 若 Timer 计数器的时钟源是系统时钟或其相应的时钟振荡器模块被停用,则 Timer 停止计数; 否则,仍然保持计数。(其中,Timer 包含 Timer16, TM2, TM3。)
- (6) 唤醒来源:
 - a.IO Toggle 唤醒: IO 在数字输入模式下的电平变换(PxC 位是 0,PxDIER 位是 1)。
 - b. Timer 唤醒: 如果计数器(Timer)的时钟源不是系统时钟,则当计数到设定值时,系统会被唤醒。
 - c.比较器唤醒:使用比较器唤醒时,需同时设定 *GPCC*.7 为 1 与 *GPCS*.6 为 1 来启用比较器唤醒功能。但请注意:内部 1.20V Bandgap 参考电压不适用于比较器唤醒功能。

以下例子是利用 Timer16 来唤醒系统因 stopexe 的省电模式:

\$ **T16M** ILRC, /1, BIT8 // Timer16 设置

WORD count

=

0; STT16

count;

stopexe;

... //Timer16 的初始值为 0,在 Timer16 计数了 256 个 ILRC 时钟后,系统将被唤醒。

7 触摸键 8 位 MTP 类型单片机

7.2. 掉电模式("stopsys")

掉电模式是深度省电的状态,所有的振荡器模块都会被关闭。使用 stopsys 指令可以使芯片直接进入掉电模式。在下达 stopsys 指令之前建议将 GPCC.7 设为 0 来关闭比较器。

输入引脚的唤醒可视为程序正常运行,为了降低功耗,进入掉电模式之前,所有的 I/O 引脚应仔细检查,避免悬空而漏电。

下面显示发出 stopsys 命令后, JZ8M117 内部详细的状态:

- (1) 所有的振荡器模块被关闭。
- (2) MTP 存储器被关闭。
- (3) SRAM 和寄存器内容保持不变。
- (4) 唤醒源: IO 在数字输入模式下电平变换(PxDIER 位是 1)。

掉电模式参考示例程序如下所示:

```
      CLKMD = 0xF4;
      // 系统时钟从 IHRC 变为 ILRC, 关闭看门狗时钟

      CLKMD.4 = 0;
      // IHRC 停用

      ...
      while (1)

      {
      stopsys;
      // 进入掉电模式

      if (...) break;
      // 假如发生唤醒而且检查 OK, 就返回正常工作

      // 否则, 停留在掉电模式。

      }

      CLKMD = 0x34;
      // 系统时钟从 ILRC 变为 IHRC/2
```

7.3. 唤醒

进入掉电或省电模式后,JZ8M117 可以通过切换 IO 引脚恢复正常工作。而 Timer 的唤醒只适用于省电模式。表 6 显示 *stopsys* 掉电模式和 *stopexe* 省电模式在唤醒源的差异。

掉电模式(stopsys)和省电模式 (stopexe)在唤醒源的差异						
	切换 IO 引脚	计时器唤醒	比较器唤醒			
stopsys	是	否	否			
stopexe	是	是	是			

表 6: 掉电模式和省电模式在唤醒源的差异

7 触摸键 8 位 MTP 类型单片机

当使用 IO 引脚来唤醒 JZ8M117,寄存器 *PxDIER* 应正确设置,使每一个相应的引脚可以有唤醒功能。 从唤醒事件发生后开始计数,正常的唤醒时间大约是 3000 个 ILRC 时钟周期,另外,JZ8M117 提供快速唤 醒功能,透过

MISC 寄存器选择快速唤醒大约 45 个 ILRC 时钟周期。

模式	唤醒模式	切换 IO 引脚的唤醒时间(twup)
STOPEXE 省电模式 STOPSYS 掉电模式	快速唤醒	45 * T _{ILRC} , 这里的 T _{ILRC} 是指 ILRC 时钟周期
STOPEXE 省电模式 STOPSYS 掉电模式	正常唤醒	3000* T _{ILRC} , 这里的 T _{ILRC} 是指 ILRC 时钟周期

表 7: 快速唤醒和正常唤醒的时间差异

8. 中断

JZ8M117 有 8 个中断源:

- ◆ 外部中断源 PA0/PA5
- ◆ 外部中断源 PB0
- ◆ Timer16 中断源
- ◆ Timer2 中断源
- ◆ Timer3 中断源
- ◆ 比较器中断源
- ◆ 2 个触摸按键中断(TK_OV 和 TK_END)。

中断硬件框图请参考图 7。每个中断请求源都有自己的中断控制位启用或停用它。所有的中断请求标志位是由硬件置位并且并通过软件写寄存器 *INTRQ* 清零。中断请求标志设置点可以是上升沿或下降沿或两者兼而有之, 这取决于对寄存器 *INTEGS* 的设置。所有的中断请求源最后都需由 *engint* 指令控制(启用全局中断)使中断运行, 以及使用 *disgint* 指令(停用全局中断)停用它。

中断堆栈是共享数据存储器,其地址由堆栈寄存器 SP 指定。由于程序计数器是 16 位宽度,堆栈寄存器 SP 位 0 应保持 0。此外,用户可以使用 pushaf 指令存储 ACC 和标志寄存器的值到堆栈,以及使用 popaf 指令将值从堆栈恢复到 ACC 和标志寄存器中。由于堆栈与数据存储器共享,在 Mini-C 模式,堆栈位置与深度由编译程序安排。在汇编模式或自行定义堆栈深度时,用户应仔细安排位置,以防地址冲突。

在中断服务程序中,可以通过读取寄存器 INTRQ 知道中断发生源。

注:可在 Code Option Interrupt Src0 或 Interrupt Src1 中切换外部中断源。

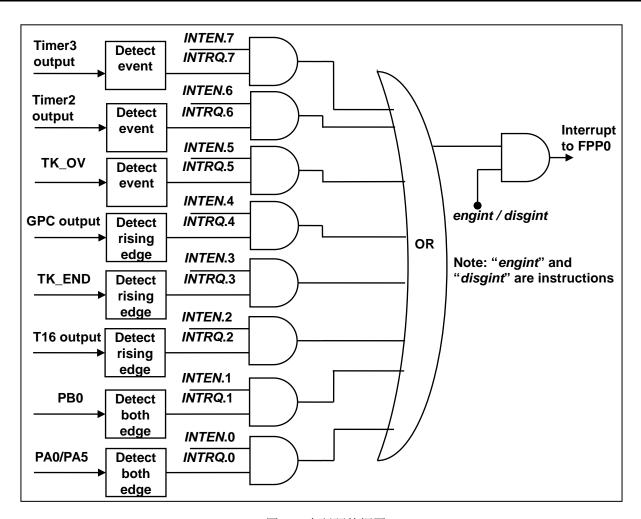


图 7: 中断硬件框图

8.1. 中断允许寄存器(INTEN), 地址 = 0x04

位	初始值	读/写	描述
7	0	读/写	启用从 Timer3 的溢出中断。0/1: 停用/启用
6	0	读/写	启用从 Timer2 的溢出中断。0/1: 停用/启用
5	0	读/写	启用从触摸按键的 TK_OV 中断。0/1: 停用/启用
4	0	读/写	启用从比较器的溢出中断。0/1: 停用/启用
3	0	读/写	启用从触摸按键的 TK_END 中断。0/1: 停用/启用
2	0	读/写	启用从 Timer16 的溢出中断。0/1: 停用/启用
1	0	读/写	启用从 PB0 的中断。0/1: 停用/启用
0	0	读/写	启用从 PA0/PA5 的中断。0/1: 停用/启用

7 触摸键 8 位 MTP 类型单片机

8.2. 中断请求寄存器(INTRQ), 地址 = 0x05

位	初始值	读/写	描述
7	-	读/写	Timer3 的中断请求,此位是由硬件置位并由软件清零。 0/1: 不要求/请求
6	-	读/写	Timer2 的中断请求,此位是由硬件置位并由软件清零。 0/1: 不要求/请求
5	-	读/写	触摸按键 TK_OV 的中断请求,此位是由硬件置位并由软件清零。 0/1: 不要求/请求
4	-	读/写	比较器的中断请求,此位是由硬件置位并由软件清零。 0/1: 不要求/请求
3	-	读/写	触摸按键 TK_END 的中断请求,此位是由硬件置位并由软件清零。 0/1: 不要求/请求
2	-	读/写	Timer16 的中断请求,此位是由硬件置位并由软件清零。 0/1: 不要求/请求
1	-	读/写	PB0 的中断请求,此位是由硬件置位并由软件清零。 0/1: 不要求/请求
0	-	读/写	PA0/PA5 的中断请求,此位是由硬件置位并由软件清零。 0/1: 不要求/请求

注意: INTEN, INTRQ 没有初始值,所以要使用中断前,一定要根据需要设定数值。即使 INTEN 为 0, INTRQ 还是会被中断发生源触发。

8.3. 中断边缘选择寄存器(INTEGS), 地址 = 0x0C

Bit	Reset	R/W	Description				
7 - 5	-	-	保留,请设为 0。				
4 - WO 0: 上升缘请求中断。 1: 下降缘请求中断。 1: 下降缘请求中断。							
3 - 2	-	WO	PB0 中断边缘选择: 00:上升缘和下降缘都请求中断。 01:上升缘请求中断。 10:下降缘请求中断。 11:保留。				
1 - 0	PA0 / PA5 中断边缘选择: 00: 上升缘和下降缘都请求中断。 - WO 01: 上升缘请求中断。 10: 下降缘请求中断。 11: 保留。						

7 触摸键 8 位 MTP 类型单片机

8.4. 中断工作流程

一旦发生中断,其具体工作流程如下:

- (1) 程序计数器将自动存储到 SP 寄存器指定的堆栈存储器。
- (2) 新的 SP 将被更新为 SP+2。
- (3) 全局中断将自动被停用。
- (4) 将从地址 0x010 获取下一条指令。

中断完成后,发出 reti 指令返回既有的程序,其具体工作流程如下:

- (1) 从 SP 寄存器指定的堆栈存储器自动恢复程序计数器。
- (2) 新的 SP 将被更新为 SP-2。
- (3) 全局中断将自动启用。
- (4) 下一条指令将是中断前原来的指令。

8.5.中断的一般步骤

步骤 1:设定 INTEN 寄存器,开启需要的中断的控

制位。步骤 2: 清除 INTRQ 寄存器。

步骤 3: 主程序中,使用 engint 指令(启用全局中断)允许 CPU 的中断

功能。步骤 4: 等待中断。中断发生后, 跳入中断子程序。

步骤 5: 当中断子程序执行完毕,返回主程序。

跳入中断子程序处理时,可使用 pushaf 指令来保存 ALU 和 FLAG 寄存器数据,并在 reti 之前,使用 popaf

指令复原。一般步骤如下:

 void Interrupt (void)
 // 中断发生后,跳入中断子程序,

 {
 // 自动进入 disgint 的状态, CPU 不会再接受中断

 PUSHAF;
 ...

 P
 O

 P
 A

 F;
 // 系统自动填入 reti, 直到执行 reti 完毕才自动恢复到 engint 的状态

*在主程序中,可使用 disgint 指令关闭所有中断。

7 触摸键 8 位 MTP 类型单片机

8.6. 使用中断举例

使用者必须预留足够的堆栈存储器以保存中断向量,一级中断需要两个字节,两级中断需要四个字节。下面的示例程序演示了如何处理中断,请注意,处理中断和 pushaf 是需要四个字节堆栈存储器。

```
void
      FPPA0
             (void)
{
    $ INTEN PAO;
                   // INTEN =1; 当 PAO 准位改变,产生中断请求
    INTRQ = 0; // 清除 INTRQ
                  // 启用全局中断
    ENGINT
    DISGINT
                // 停用全局中断
}
void Interrupt (void) // 中断程序
{
                  // 存储 ALU 和 FLAG 寄存器
   PUSHAF
   // 如果 INTEN.PAO 在主程序会动态开和关,则表达式中可以判断 INTEN.PAO 是否为 1。
   // 例如: If (INTEN.PA0 && INTRQ.PA0) {...}
   // 如果 INTEN.PAO 一直在使能状态,就可以省略判断 INTEN.PAO,以加速中断执行。
   If (INTRQ.PA0)
                  // PA0 的中断程序
      INTRQ.PA0 = 0; // 只须清除相对应的位 (PA0)
   }
   // (X:) INTRQ = 0; // 不建议在中断程序最后,才使用 INTRQ = 0 一次全部清除
                   // 因为它可能会把刚发生而尚未处理的中断, 意外清除掉
   POPAF
                  // 回复 ALU 和 FLAG 寄存器
```


9. I/O端口

9.1. IO 相关寄存器

9.1.1. 端口 A 数字输入启用寄存器(PADIER), 地址 = 0x0D

位	初始值	读/写	描述		
使能 PA7~PA6 数字输入和唤醒事件。 7 - 6					
			当使用外部晶体振荡器的时候,该位设为 0 防止耗电。		
5	1 只写 使能 PA5 数字输入、唤醒事件和中断请求。				
3 八 八 八 月 1 / 0: 启用/ 停用		ハー	1/0: 启用/ 停用		
4-3 11 只写 使能 PA4~ PA3 数字输入和唤醒事件。		只写	使能 PA4~PA3 数字输入和唤醒事件。		
4-3	11	バヨ	1/0: 启用/ 停用		
2 - 1	1 - 保留。		保留。		
0 1 只写 使能 PAO 数字输入、唤醒事件和中断请求。 1 / 0: 启用 / 停用		使能 PAO 数字输入、唤醒事件和中断请求。 1/0: 启用 / 停用			

9.1.2. 端口 B 数字输入启用寄存器(PBDIER), 地址 = 0x0E

位	初始值	读/写	描述		
7	1	只写	使能 PB7 数字输入和唤醒事件。 0/1: 停用 / 启用		
6 - 1	-	1	保留		
0	1	只写	使能 PBO 数字输入、唤醒事件和中断请求。 0/1: 停用 / 启用		

9.1.3. 端口 A 数据寄存器(PA), 地址 = 0x10

位	初始值	读/写	描述	
7 – 0	0x00	读/写	数据寄存器的端口 A。	

9.1.4. 端口 A 控制寄存器(PAC), 地址 = 0x11

位	初始值	读/写	描 述
7 – 0	0x00	读/写	端口A控制寄存器。这些寄存器是用来定义端口A每个相应引脚的输入模式或输出模式。0/1:输入/输出

9.1.5. 端口 A 上拉控制寄存器(PAPH), 地址 = 0x12

位	初始值	读/写	描 述			
7 0	0,400	读/写	端口 A 上拉控制寄存器。该寄存器是用来控制端口 A 每个相应引脚的上拉功能。			
7 - 0	0x00	贤/刁	0/1: 停用/启用			

7 触摸键 8 位 MTP 类型单片机

9.1.6. 端口 A 下拉控制寄存器(PAPL), 地址 = 0x13

位	初始值	读/写	描 述			
7 0	0x00	0x00 读/写	端口 A 下拉控制寄存器。该寄存器是用来控制端口 A 每个相应引脚的下拉功能。			
7 - 0		以/刁	0/1: 停用/启用			

9.1.7. 端口 B 数据寄存器(PB), 地址 = 0x14

位	初始值	读/写	描 述		
7 – 0	0x00	读/写	数据寄存器的端口 B。		

9.1.8. 端口 B 控制寄存器(PBC), 地址 = 0x15

位	初始值	读/写	描 述		
7 – 0	0x00	读/写	端口B控制寄存器。这些寄存器是用来定义端口B每个相应的引脚的输入模式或输出模		
' - 0	0,000	以/一	式。0/1: 输入/输出		

9.1.9. 端口 B 上拉控制寄存器(PBPH), 地址 = 0x16

1	立	初始值	读/写	描 述			
7	0	0200	法/官	端口 B 上拉控制寄存器。这些寄存器是用来控制端口 B 每个相应引脚上拉电阻的使能。			
'	-0	0x00	读/写	0/1: 停用/启用			

9.1.10. 端口 B 下拉控制寄存器(PBPL), 地址 = 0x17

	位	初始值	读/写	描 述			
	7 – 0	0x00	0,400	端口B下拉控制寄存器。这些寄存器是用来控制端口B每个相应引脚下拉电阻的使能。			
			读/写	0/1: 停用/启用			

9.2. IO 结构及功能

921. IO 引脚的结构

JZ8M117的所有 IO 引脚都具有相同的结构,如下图 8。

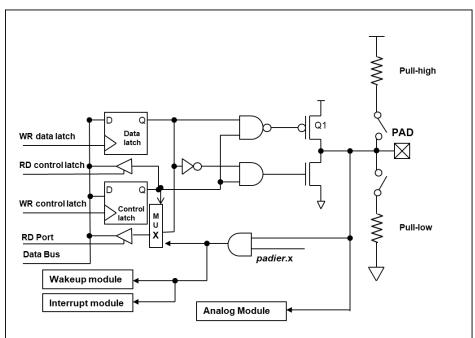


图 8: 引脚缓冲区硬件图

922 IO 引脚的一般功能

(1)输入、输出功能:

JZ8M117 所有 IO 引脚都可编程设定为数字输入或模拟输入、低输出或高输出。

透过数据寄存器(PA/PB),控制寄存器(PAC/PBC)和上拉、下拉控制寄存器(PAPH/PBPH、PAPL/PBPL)设定,每一 IO 引脚都可以独立配置成不同的功能。

当引脚被用做模拟输入功能时,为减少漏电流,请关闭 PxDIER 寄存器相应位的数字输入功能。当这些引脚为输出状态时,其弱上拉/下拉电阻会自动关闭。

如果要读取端口上的电位状态,一定要先将端口设置成输入模式;在输出模式下,读取到的数据是数据寄存器的值。表 8 为端口 PAO 的设定配置表。

PA.0	PAC.0	PAPH.0	PAPL.0	描述
Х	0	0	0	输入悬空,没有上拉/下拉电阻
Х	0	1	0	输入,有上拉电阻
Х	0	0	1	输入,有下拉电阻
Х	0	1	1	输入,有上拉/下拉电阻
0	1	X	X	输出低电位
1	1	Χ	Х	输出高电位

表 8: PAO 设定配置表

(2)睡眠唤醒功能:

当 JZ8M117 在掉电或省电模式,每一个引脚都可以切换其状态来唤醒系统。对于需用来唤醒系统的引脚, 必须设置为输入模式以及寄存器 *PxDIER* 相应位为高。

(3)外部中断功能:

当 IO 作为外部中断引脚时,*PxDIER* 相应位应设置高。例,当 PAO 用来作为外部中断引脚时,*PADIER*.0 应设置高。

(4)驱动能力可选:

部分引脚可通过程序选项 Drive 来调整驱动电流和灌电流。

923. IO 使用与设定

- (1) IO 作为数字输入
- ◆ 将 IO 设为数字输入时, Vih 与 Vil 的准位,会随着工作电压和温度有变动。请参考 Vih 最小值和 Vil 最大值。
- ◆ 内部上拉电阻值也将随着电压、温度与引脚电压而变动,并非为固定值。
- (2) IO 作为数字输入和打开唤醒功能
- ◆用 PxC 寄存器,将 IO 设为输入。
- ◆ 用 PxDIER 寄存器,将对应的位设为 1 以启用数字输入。
- ◆ 为了防止 PA 中没有用到的 IO 口漏电, PADIER[1:2]需要常设为 0。
- (3) PA5 作为 PRSTB 输入
- ◆ 设定 PA5 为输入。
- ◆ 设定 *CLKMD*.0=1, 使 PA5 为外部 PRSTB 输入脚位。
- (4) PA5 作为输入并通过长导线连接至按键或者开关
- ◆ 必需在 PA5 与长导线中间串接 >10 Ω 电阻。
- ◆ 应尽量避免使用 PA5 作为输入。

10. Timer / PWM 计数器

10.1. 16 位计数器 (Timer16)

10.1.1. Timer16 介绍

JZ8M117 内置一个 16 位硬件计数器 Timer16(T16), 其模块框图如图 9。

计数器时钟源由寄存器 *T16M*[7:5]来选择,在时钟送到 16 位计数器(counter16)之前, *T16M*[4:3] 可对时钟进行预分频处理,有÷1、÷4、÷16、÷64 等四种选项,让计数范围更大。

T16M[2:0]用于选择 Timer16 的中断源,其来自于 16 位计数器的位 8 到位 15。当计数器溢出时,Timer16 就触发中断。经由寄存器 *INTEGS*.4,可选择中断类型是上升沿触发或下降沿触发。

16 位计数器只能向上计数,计数器初始值可以用 *stt16* 指令设定,计数器的数值可以用 *ldt16* 指令存储到数据存储器。

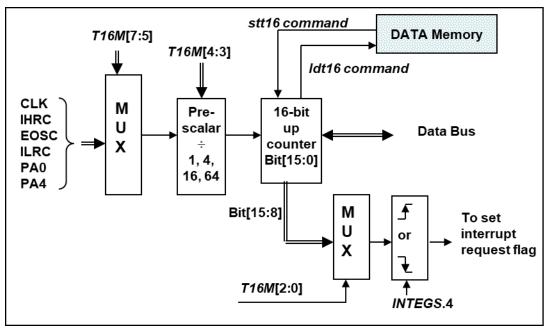


图 9: Timer16 模块框图

Timer16 的语法定义在.inc 文件中。*T16M* 共有三个配置参数,第一个参数用来定义 Timer16 的时钟源, 第二个参数用来定义预分频器,第三个参数是确定中断源。

T16M IO_RW 0x06

\$ 7~5: STOP, SYSCLK, X, PA4_F, IHRC, EOSC, ILRC, PA0_F // 第一个参数

\$ 4~3: /1, /4, /16, /64 // 第二个参数

\$ 2~0: BIT8, BIT9, BIT10, BIT11, BIT12, BIT13, BIT14, BIT15 // 第三个参数

JZ8M117

7 触摸键 8 位 MTP 类型单片机

使用者可以依照系统的要求来定义 T16M 参数,例子如下:

\$ T16M SYSCLK, /64, BIT15;

// 选择(SYSCLK/64) 当 Timer16 时钟源,每 2¹6 个时钟周期产生一次 *INTRQ*.2=1

// 系统时钟 System Clock = IHRC / 2 = 8 MHz

// SYSCLK/64 = 8 MHz/64 = 8 uS,约每 524 mS 产生一次 *INTRQ*.2=1

\$ T16M PA0, /1, BIT8;

// 选择 PAO 当 Timer16 时钟源,每 2^9 个时钟周期产生一次 INTRQ.2=1

// 每接收 512 个 PA0 时钟周期产生一次 INTRQ.2=1

\$ T16M STOP;

// 停止 Timer16 计数

10.1.2. Timer16 控制寄存器(T16M), 地址 = 0x06

位	初始值	读/写	描述
7 – 5	000	读/写	Timer16 时钟选择: 000: 停用 Timer16 001: CLK 系统时钟 010: 保留 011: PA4 下降沿(外部事件) 100: IHRC 101: EOSC 110: ILRC 111: PA0 下降沿(外部事件)
4 – 3	00	读/写	Timer16 内部的时钟分频器。 00: ÷1 01: ÷4 10: ÷16 11: ÷64
2-0	000	读/写	中断源选择。当选择位由低变高或由高变低时,发生中断事件。 0: Timer16 位 8 1: Timer16 位 9 2: Timer16 位 10 3: Timer16 位 11 4: Timer16 位 12 5: Timer16 位 13 6: Timer16 位 14 7: Timer16 位 15

7 触摸键 8 位 MTP 类型单片机

10.1.3. Timer16 溢出时间

当设定 \$ INTEGS BIT_R 时(这是 IC 默认值),且设定 T16M 计数器 BIT8 产生中断,若 T16 计数从 0 开始 ,则第一次中断是在计数到 0x100 时发生(BIT8 从 0 到 1),第二次中断在计数到 0x300 时发生(BIT8 从 0 到 1)。所以设定 BIT8 是计数 512 次才中断。请注意,如果在中断中重新给 T16M 计数器设值,则下一次中断也将在 BIT8 从 0 变 1 时发生。

如果设定 $$INTEGS BIT_F$$ (BIT 从 1 到 0 触发) 而且设定 T16M 计数器 BIT8 产生中断,则 T16 计数改为每次数到 0x200/0x400/0x600/...时发生中断。两种设定 INTEGS 的方法各有好处,也请注意其中差异。

10.2. 8 位 PWM 计数器(Timer2, Timer3)

JZ8M117 内置 2 个 8 位 PWM 硬件定时器(Timer2/TM2,Timer3/TM3),两个计数器的原理一样,以下以Timer2 来说明,TM2 硬件框图请参考图 10。

寄存器 *TM2C*[7:4]用来选择定时器时钟; *TM2C*[3:2]用来选择 Timer2 的输出。寄存器 *TM2S*[6:0]用于选择时钟分频处理。寄存器 *TM2B* 用来控制定时器的计数上限,当计数值达到 *TM2B* 设定的上限时,定时器将自动清零。寄存器 *TM2CT* 用于设置或读取定时器的计数值。

8 位 PWM 定时器的工作模式有周期模式和 PWM 模式两种。周期模式用于输出固定周期波形; PWM 模式是用来产生 PWM 输出波形, PWM 分辨率可以为 6~8 位。

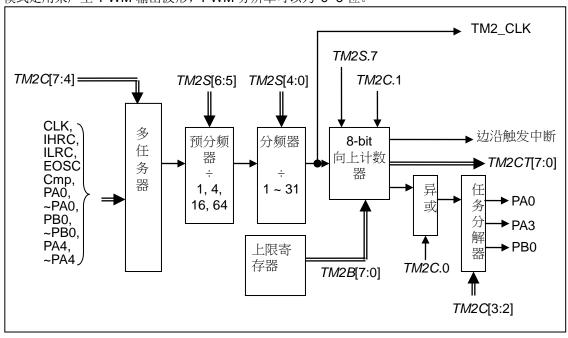


图 10: Timer2 模块框图

Timer3 的计数输出可选择为 PA4, PA5 或 PB7。

7 触摸键 8 位 MTP 类型单片机

图 11 显示出 Timer2 周期模式和 PWM 模式的时序图:

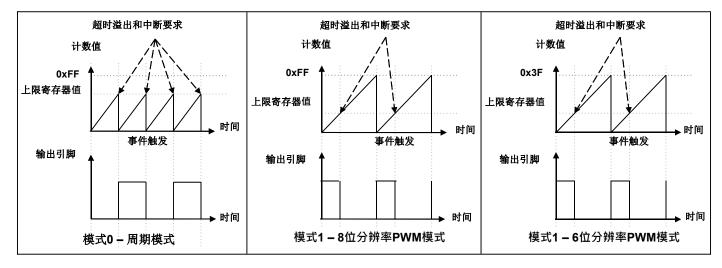


图 11: Timer2 周期模式和 PWM 模式的时序图

程序选项" GPC_PWM "是指由比较器结果控制 PWM 波形。选用此功能后,当比较器输出为 1 时, PWM 停止输出; 比较器输出为 0 时, PWM 恢复输出。如图 12 所示。

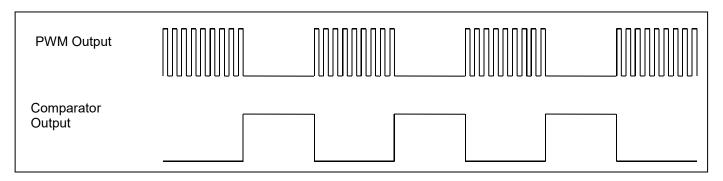


图 12: 比较器控制 PWM 输出

10.2.1. Timer2、Timer3 相关寄存器

10.2.1.1. Timer2 分频寄存器(TM2S), 地址 = 0x1E

位	初始值	读/写	描 述
7	0	只写	PWM 分辨率选择。 0: 8 位 1: 6 位或者 7 位(由程序选项 TMx_bit 控制)
6 – 5	00	只写	Timer2 时钟预分频器。 00: ÷ 1 01: ÷ 4 10: ÷ 16 11: ÷ 64
4 – 0	00000	只写	Timer2 时钟分频器。

7 触摸键 8 位 MTP 类型单片机

10.2.1.2. Timer2 控制寄存器(*TM2C*),地址 = 0x1C

位	初始值	读/写	描 述
7 – 4	0000	读/写	Timer2 时钟源选择。 0000: 停用 0001: CLK 0010: IHRC 或者 IHRC*2 (由程序选项 TMx_source 控制) 0011: EOSC 0100: ILRC 0101: 比较器输出 1000: PA0 (上升沿) 1001: ~PA0 (下降沿) 1010: PB0 (上升沿) 1011: ~PB0 (下降沿) 1100: PA4 (上升沿) 1101: ~PA4 (下降沿) 其他: 保留 注意: 在 ICE 模式且 IHRC 被选为 Timer2 定时器时钟,当 ICE 停下时,发送到定时器的时钟是不停止,定时器仍然继续计数。
3-2	00	读/写	Timer2 输出选择。 00: 停用 01: PA0 10: PA3 11: PB0
1	0	读/写	Timer2 模式选择。 0 / 1: 周期模式 / PWM 模式。
0	0	读/写	启用 Timer2 反极性输出。 0 / 1: 停用/启用

10.2.1.3. Timer2 计数寄存器(TM2CT), 地址 = 0x1D

位	初始值	读/写	描 述
7 – 0	0x00	读/写	Timer2 定时器位[7:0]。

10.2.1.4. Timer2 上限寄存器(TM2B), 地址 = 0x1F

位	初始值	读/写	描 述
7 – 0	0x00	只写	Timer2 上限寄存器。

10.2.1.5. Timer3 计数寄存器(TM3CT), 地址 = 0x33

位	初始值	读/写	描 述
7 – 0	0x00	读/写	Timer3 定时器位[7:0]。

7 触摸键 8 位 MTP 类型单片机

10.2.1.6. Timer3 分频寄存器(TM3S), 地址= 0x34

位	初始值	读/写	描 述
7	0	只写	PWM 分辨率选择。 0: 8 位 1: 6 位或 7 位 (由程序选项 TMx_bit 控制)
6 – 5	00	只写	Timer3 时钟预分频器。 00: ÷ 1 01: ÷ 4 10: ÷ 16 11: ÷ 64
4 – 0	00000	只写	Timer3 时钟分频器。

10.2.1.7. Timer3 上限寄存器(TM3B), 地址 = 0x35

位	初始值	读/写	描 述
7 – 0	0x00	只写	Timer3 上限寄存器。

10.2.1.8. Timer3 控制寄存器(TM3C), 地址 = 0x32

位	初始值	读/写	描 述
7 – 4	0000	读/写	Timer3 时钟选择。 0000: 停用 0001: CLK 0010: IHRC 或者 IHRC*2 (由程序选项 TMx_source 控制) 0011: EOSC 0100: ILRC 0101: 比较器输出 1000: PA0 (上升沿) 1001: ~PA0 (下降沿) 1010: PB0 (上升沿) 1011: ~PB0 (下降沿) 1100: PA4 (上升沿) 1101: ~PA4 (下降沿) 其他: 保留 注意: 在 ICE 模式且 IHRC 被选为 Timer3 定时器时钟,当 ICE 停下时,发送到定时器的时钟是不停止,定时器仍然继续计数。
3 – 2	00	读/写	Timer3 输出选择。 00: 停用 01: PA4 10: PA5 11: PB7
1	0	读/写	Timer3 模式选择。 0: 周期模式 1: PWM 模式
0	0	读/写	启用 Timer3 反极性输出。 0 / 1: 停用/启用。

7 触摸键 8 位 MTP 类型单片机

10.2.2 使用 Timer2 产生定期波形

如果选择周期模式的输出,输出波形的占空比总是 50%, 其输出频率与寄存器设定,可以概括如下:

```
输出频率 = Y ÷ [2 × (K+1) × S1 × (S2+1)]
```

```
这里,
   Y = TM2C[7:4]: Timer2 所选择的时钟源频率
   K = TM2B[7:0]: 上限寄存器设定的值(十进制)
   S1 = TM2S[6:5]: 预分频器设定值 (S1 = 1, 4, 16, 64)
   S2 = TM2S[4:0]: 分频器值(十进制, S2 = 0~31)
例 1:
   TM2C = 0b0001_1100, Y=8MHz
   TM2B = 0b0111 1111, K=127
   TM2S = 0b0 00 00000, S1=1, S2=0
   → 输出频率 = 8MHz ÷ [2 × (127+1) × 1 × (0+1)] = 31.25KHz
例 2:
   TM2C = 0b0001_1100, Y=8MHz
   TM2B = 0b0000_0001, K=1
   TM2S = 0b0 00 00000, S1=1, S2=0
   → 输出频率 = 8MHz ÷ [2 × (1+1) × 1 × (0+1)] = 2MHz
   使用 Timer2 定时器产生定期波形的示例程序如下所示:
   void FPPA0 (void)
   {
        . ADJUST_IC SYSCLK=IHRC/2, IHRC=16MHz, V<sub>DD</sub>=5V
        TM2CT = 0x00;
        TM2B = 0x7f;
        TM2S = 0b0 \ 00 \ 00001;
                                     // 8 位 PWM, 预分频 = 1, 分频 = 2
                                     //系统时钟,输出 =PA3,周期模式
        TM2C = 0b0001 10 0 0;
        while(1)
        {
                nop;
```


7 触摸键 8 位 MTP 类型单片机

10.2.3 使用 Timer2 产生 8 位 PWM 波形

{

}

nop;

如果选择 8 位 PWM 的模式, 应设立 TM2C.1 = 1, TM2S.7 = 0, 输出波形的频率和占空比可概括如下:

```
输出频率 =Y÷[256×S1×(S2+1)]
输出空占比 = [(K+1) ÷ 256]×100%
这里,
   Y = TM2C[7:4]: Timer2 所选择的时钟源频率
   K = TM2B[7:0]: 上限寄存器设定的值(十进制)
   S1 = TM2S[6:5]: 预分频器设定值 (S1 = 1, 4, 16, 64)
   S2 = TM2S[4:0]:分频器值(十进制,S2 = 0~31)
例 1:
   TM2C = 0b0001_1110, Y=8MHz
   TM2B = 0b0111 1111, K=127
   TM2S = 0b0_00_00000, S1=1, S2=0
   → 输出频率 = 8MHz ÷ (256 × 1 × (0+1)) = 31.25KHz
   → 输出空占比 = [(127+1) ÷ 256] × 100% = 50%
例 2:
   TM2C = 0b0001_1110, Y=8MHz
   TM2B = 0b0000\_1001, K = 9
   TM2S = 0b0 00 00000, S1=1, S2=0
   → 输出频率 = 8MHz ÷ (256 × 1 × (0+1)) = 31.25KHz
   → 输出空占比 = [(9+1) ÷ 256] × 100% = 3.9%
   使用 Timer2 定时器产生 PWM 波形的示例程序如下所示:
   void FPPA0 (void)
        . ADJUST_IC SYSCLK=IHRC/2, IHRC=16MHz, V<sub>DD</sub>=5V
        TM2CT = 0x00;
        TM2B = 0x7f;
                               //8 位 PWM, 预分频 = 1, 分频 = 2
        TM2S = 0b0_00_00001;
        TM2C = 0b0001\_10\_1\_0;
                                //系统时钟,输出 = PA3, PWM 模式
        while(1)
```

7 触摸键 8 位 MTP 类型单片机

10.2.4 使用 Timer2 产生 6 位 PWM 波形

如果选择 6 位 PWM 的模式,应设立 TM2C.1 = 1, TM2S.7 = 1,输出波形的频率和占空比可概括如下:

输出频率 = Y÷ [64 × S1 × (S2+1)] 输出空占比 = [(K+1)÷64]×100%

这里,

Y = TM2C[7:4]: Timer2 所选择的时钟源频率

K = TM2B[7:0]: 上限寄存器设定的值(十进制)

S1 = *TM2S*[6:5]: 预分频器设定值 (S1 = 1, 4, 16, 64) S2 = *TM2S*[4:0]: 分频器值(十进制, S2 = 0~31)

例 1:

TM2C = 0b0001_1110, Y=8MHz

TM2B = 0b0011_1111, K=63

TM2S = 0b1 00 00000, S1=1, S2=0

- → 输出频率 = 8MHz ÷ (64 × 1 × (0+1)) = 125KHz
- → 输出空占比 = [(63+1) ÷ 64] × 100% = 100%

例 2:

TM2C = 0b0001_1110, Y=8MHz

TM2B = 0b0000 0000, K=0

TM2S = 0b1_00_00000, S1=1, S2=0

- → 输出频率 = 8MHz ÷ (64 × 1 × (0+1)) = 125KHz
- → 输出空占比 = [(0+1) ÷ 64] × 100% =1.5%

11.特殊功能

11.1. 比较器

JZ8M117 内置一个硬件比较器,硬件框图如图 13。它可以比较两个输入端之间的信号大小。进行比较的两个信号,一个是正输入,另一个是负输入。正输入由寄存器 *GPCC*.0 选择;负输入由 *GPCC*[3:1] 选择。

比较器输出的结果可以:

- (1) 由 GPCC.6 读取出来;
- (2) 由 GPCC.4 选择输出信号是否反极性;
- (3) 由 GPCC.5 选择是否由 Time2(TM2 CLK)采样输出;
- (4) 由 GPCS.7 选择是否输出到 PAO;
- (5)产生中断信号。

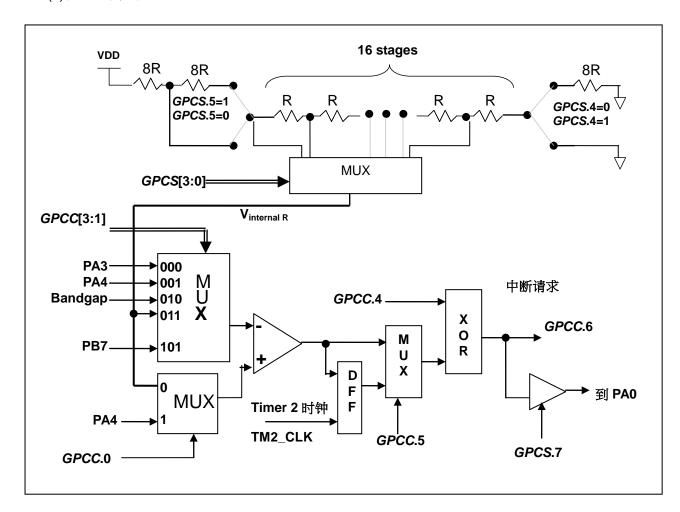


图 13: 比较器硬件图框

7 触摸键 8 位 MTP 类型单片机

11.1.1. 比较器控制寄存器(GPCC), 地址= 0x18

位	初始值	读/写	描 述
7	0	读/写	启用比较器。0/1:停用/启用 当此位被设置为启用,请同时设置相应的模拟输入引脚是数字停用,以防止漏电。
6	-	只读	比较器结果。 0: 正输入 < 负输入 1: 正输入 > 负输入
5	0	读/写	选择比较器的结果是否由 TM2_CLK 采样输出。 0: 比较器的结果没有 TM2_CLK 采样输出 1: 比较器的结果是由 TM2_CLK 采样输出
4	0	读/写	选择比较器输出的结果是否反极性。 0: 比较器输出的结果没有反极性 1: 比较器输出的结果是反极性
3 – 1	000	读/写	选择比较器负输入的来源。 000: PA3 001: PA4 010: 内部 1.20 V Bandgap 参考电压(不适用于比较器唤醒功能) 011: V _{internal R} 100: 保留 101: PB7(仿真器不支持) 11X: 保留
0	0	读/写	选择比较器正输入的来源。 0: V _{internal R} 1: PA4

11.1.2. 比较器选择寄存器(GPCS),地址 = 0x19

位	初始值	读/写	描述
7	0	只写	比较器输出启用(到 PAO)。 0/1: 停用/启用。 (仿真时,如果比较器输出到 PAO,则 PA3 会被设为输出。实际 IC 没有此问题)
6	0	只写	比较器唤醒启用。(gpcc.6 发生电平变化时才可唤醒) 0/1: 停用/启用
5	0	只写	选择比较器参考电压 Vinternal R 最高的范围。
4	0	只写	选择比较器参考电压 Vinternal R 最低的范围。
3 – 0	0000	只写	选择比较器参考电压 V _{internal R} 。 0000 (最低) ~ 1111 (最高)

7 触摸键 8 位 MTP 类型单片机

11.1.3. 内部参考电压 (V_{internal R})

内部参考电压 V_{internal R} 由一连串电阻组成,可以通过寄存器 *GPCS*[5:0]来设置具体数值,范围从 (1/32)*VDD 到 (3/4)*VDD。寄存器 *GPCS* 的位 4 和位 5 用来选择 V_{internal R} 的最高和最低值;位[3:0]用于选择所要的电压水平,这电压水平是由 V_{internal R} 的最高和最低值均分 16 等份。

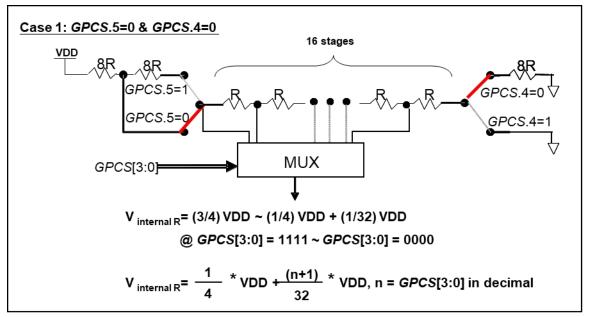


图 14: V_{internal R} 硬件接法 (GPCS.5=0 & GPCS.4=0)

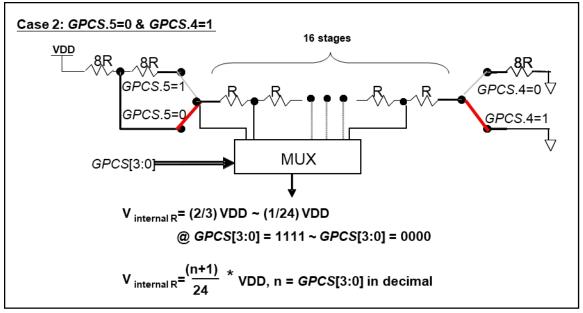


图 15: V_{internal R} 硬件接法 (GPCS.5=0 & GPCS.4=1)

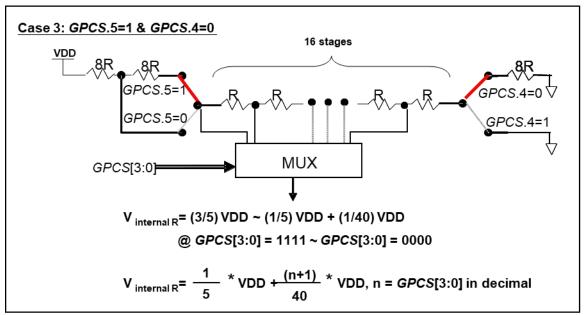


图 16: V_{internal R} 硬件接法 (GPCS.5=1 & GPCS.4=0)

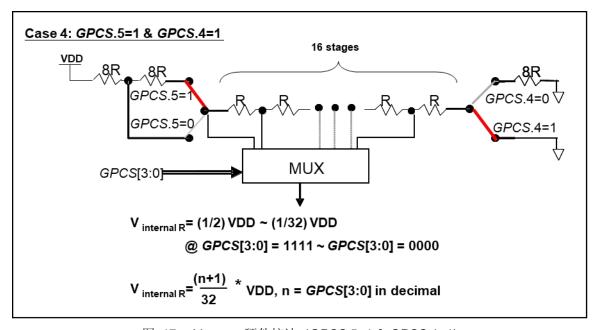


图 17: V_{internal R} 硬件接法 (GPCS.5=1 & GPCS.4=1)

11.1.4. 使用比较器

例一:

选择PA3 为负输入和Vinternal R 的电压为(18/32)*VDD 作为正输入。Vinternal R选择上图*GPCS*[5:4] = 2b'00 的配置方式,*GPCS*[3:0] = 4b'1001 (n=9) 以得到 Vinternal R = (1/4)*VDD + [(9+1)/32]*VDD = [(9+9)/32]*VDD = (18/32)*VDD 的参考电压。

```
      GPCS = 0b0_0_00_1001;
      // Vinternal R = VDD*(18/32)

      GPCC = 0b1_0_0_000_0;
      // 启用比较器,负输入: PA3,正输入: Vinternal R

      PADIER = 0bxxxx_0_xxx;
      // 停用 PA3 数字输入防止漏电(x: 由客户自定)

      或者

      $ GPCS VDD*18/32;

      $ GPCC Enable, N_PA3, P_R;
      // N_xx 是负输入, P_R 代表正输入是内部参考电压

      PADIER = 0bxxxx_0_xxx;
```

例二:

 $GPCS = 0b1 \ 0 \ 10 \ 1101;$

选择 V_{internal R}为负输入,V_{internal R}的电压为(22/40)*VDD,选择 PA4 为正输入,比较器的结果反极性并输出到 PA0。V_{internal R}选择上图的配置方式 "*GPCS*[5:4] = 2b'10" 和 *GPCS*[3:0] = 4b'1101 (n=13) 得到 V_{internal R} = (1/5)*VDD + [(13+1)/40]*VDD = [(13+9)/40]*VDD = (22/40)*VDD。

// 输出到 PA0, V_{internal R} = V_{DD}*(22/40)

```
      GPCC = 0b1_0_0_1_011_1;
      // 反极性输出,负输入=Vinternal R,正输入=PA4

      PADIER = 0bxxx_0_xxxx;
      // 停用 PA4 数字输入防止漏电(x: 由客户自定)

      或者

      $ GPCS Output, V<sub>DD</sub>*22/40;

      $ GPCC Enable, Inverse, N_R,P_PA4; // N_R 代表负输入是内部参考电压,P_xx 是正输入

      PADIER = 0bxxx 0 xxxx;
```

注意: 当选择 PAO 做比较器结果输出时,*GPCS* 会影响 PA3 的仿真输出功能,但不影响实际 IC 的功能,请在仿真时需避开这个情况。

11.1.5. 使用比较器和 Bandgap 参考电压生成器

内部 Bandgap 参考电压生成器可以提供 1.20V ,它可以测量外部电源电压水平。该 Bandgap 参考电压可以选做负输入去和正输入V_{internal R}比较。V_{internal R}的电源是 VDD,利用调整V_{internal R}电压水平和Bandgap参考电压比较,就可以知道 VDD 的电压。

如果 N(GPCS[3:0]十进制)是让 $V_{internal\ R}$ 最接近 1.20V ,那么 VDD 的电压就可以透过下列公式计算:

```
对于 Case 1 而言: V_{DD} = [ 32 / (N+9) ] * 1.20 volt; 对于 Case 2 而言: V_{DD} = [ 24 / (N+1) ] * 1.20 volt; 对于 Case 3 而言: V_{DD} = [ 40 / (N+9) ] * 1.20 volt; 对于 Case 4 而言: V_{DD} = [ 32 / (N+1) ] * 1.20 volt;
```

例一:

11.2. 触摸功能

JZ8M117 包含一个触摸检测电路, 其功能框图如图 18 所示。

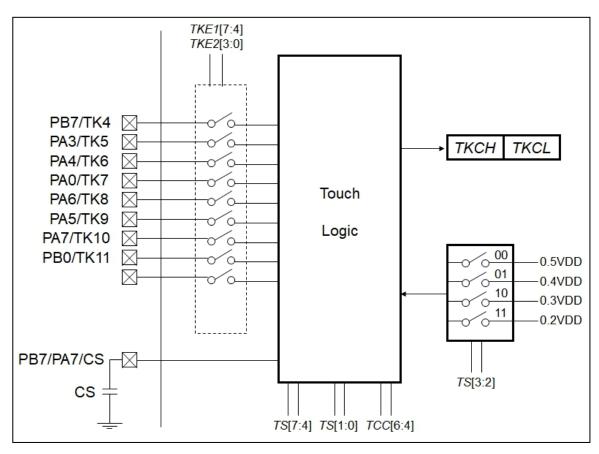


图 18: 触摸检测电路功能框图

JZ8M117 中的触摸检测电路采用电容感应的方法,检测手指的虚拟对地电容或感应极片之间的电容。

使用该功能时,需要在 PA7/CS 引脚或 PB7/CS 引脚与 GND 之间连接一颗精确的、X7R 材质的外部电容器 CS。用户可以通过程序选项 CS_Sel 选择 PA7 或 PB7 中的一个作为 CS 引脚。当 CS 引脚被选中时,另一个引脚可以像其他 IO 一样被选择为触摸按键。

启动触摸检测过程时,用户应遵循以下步骤:

- 1. 通过设置 TKE1 和 TKE2 寄存器选择要测量的感应极片(引脚)。每次只能选择一个引脚。
- 2. 通过在 *TCC* 寄存器中写入"0x10"来发出 *Touch START* 命令。电容 CS 将首先自动放电到 VSS。放电时间可以透过寄存器 *TS*[1:0]从 32,64 和 128 个触摸电路时钟周期中选择。

- 3. 电容值越大,将电容器完全放电到 VSS 所需的放电时间就越长。然而,在某些情况下,128 个触摸时钟可能仍然不够长,不足以将 CS 电容完全放电。此时,用户应该手动将"0x30"写入 *TCC* 寄存器,而不是"0x10"。在由用户控制的一定放电时间之后,用户可以发出 *Touch START* (0x10)命令来继续此触摸转换进程。或者用户也可以通过将"0x00"写入 *TCC* 寄存器来中止转换进程。
- 4. 放电后, CS 会在每个触摸时钟周期(TK_CLK)朝着 VCC 充电。充电速度由所选感应极片的电容值决定。
- 5. 当充电过程中的电压达到内部产生的阈值电压(VREF)时,充电过程将自动停止。程序通过读取 *TCC*[6:4]或 *INTRQ*[3]来判断充电过程是否停止。VREF 电压可以通过寄存器 *TS*[3:2],在 0.2*VCC、0.3*VCC、0.4*VCC 和 0.5*VCC 之间选择。
- 6. 经过读取触摸计数器 *TKCH* 和 *TKCL* 的值,用户可监测感应极片上的电容量变化。 读取到的值与 CS 和 CP 的比例有关,而 CP 表示电容可以通过因用户手指的触摸而变化的 PCB,导线和触摸板 的组合的总电容。一旦 CP 值被改变,将 CS 充电到 VREF 所需的时间缩短。通过计数时钟周期的 差异,电路可以决定触摸板是否启用。

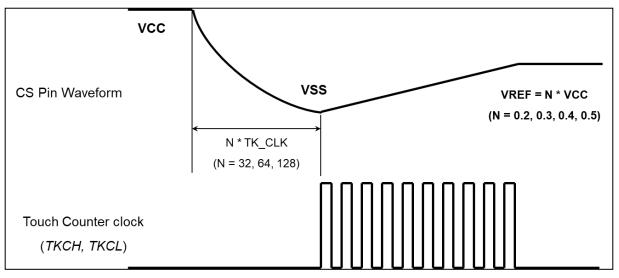


图 19: 触摸转换讲度时序图

注意: 当 VREF 电压首次设置或者中途切换参考电压选项时,请舍弃在此之后读取到的第一笔 *TKCH* 和 *TKCL* 的数据。

11.2.1. 触摸相关寄存器

11.2.1.1. 触摸选项寄存器(TS), 地址 = 0x20

位	初始值	读/写	描述
7 - 4	-	读/写	Touch 时钟(TK_CLK)选择。 0010: 4 MHz 0011: 2 MHz 0100: 1 MHz 0101: 500 kHz 0110: 250 kHz 0111: 125 kHz 1000: ILRC 其他: 保留
3 - 2	00	读/写	Touch VREF 选择 00: 0.5 * VCC 01: 0.4 * VCC 10: 0.3 * VCC 11: 0.2 * VCC
1 - 0	00	读/写	选择触摸功能启动前的放电时间(TK_DISCHG) 00: reserved 01: 32 * CLK 10: 64 * CLK 11: 128 * CLK

11.2.1.2. 触摸充电控制寄存器(TCC), 地址 = 0x21

位	初始值	读/写		描述						
7	-	-	保留							
				触摸控制和状态						
			数据	命令(W)	状态(R)					
		读/写	读/写	读/写	000	TK_STOP (触摸模块掉电)	准备中/ 结束			
6 - 4	-				读/写	- 读/写	读/写	001	TK_RUN (触摸启动指令)	运行中
			011	放电 (CS 电容放电)	放电中					
			其他	保留	保留					
3 - 0	-	-	保留							

7 触摸键 8 位 MTP 类型单片机

11.2.1.3. 触摸按键使能 2 寄存器 (TKE2), 地址 = 0x22

位	初始值	读/写	描述
7 - 4	-	-	保留
3	0	读/写	使能 PB0/TK11。0/1: 停用/启用
2	0	读/写	使能 PA7/TK10。0/1: 停用/启用
1	0	读/写	使能 PA5/TK9。0/1: 停用/启用
0	0	读/写	使能 PA6/TK8。0/1: 停用/启用

11.2.1.4. 触摸按键使能 1 寄存器 (TKE1), 地址 = 0x24

位	初始值	读/写	描述
7	0	读/写	使能 PA0/TK7。0/1: 停用/启用
6	0	读/写	使能 PA4/TK6。0/1: 停用/启用
5	0	读/写	使能 PA3/TK5。0/1: 停用/启用
4	0	读/写	使能 PB7/TK4。0/1: 停用/启用
3 - 0	-	-	保留

11.2.1.5. 触摸按键充电计数高位寄存器(TKCH), 地址= 0x2B

位	初始值	读/写	描述
7 - 4	-	-	保留
3 - 0	-	只读	触摸按键充电计数的 tkct[11:8]

11.2.1.6. 触摸按键充电计数低位寄存器(TKCL), 地址= 0x2C

位	初始值	读/写	描述
7 - 0	-	只读	触摸按键充电计数的 tkct[7:0]

11.2.1.7. 触摸参数设置寄存器 2(TPS2), 地址= 0x28

位	初始值	读/写	描述
7 – 6	00	R/W	触摸工作模式 00: 模式 A (建议 PCB 上 CS 接 VDD) 01: 模式 B (建议 PCB 上 CS 接 GND) 1X: Reserved
5 - 3	000	R/W	系统保留,请填 000
2	0	R/W	系统保留,请填 0
1 – 0	00	R/W	触摸 VREF 续电维持时间选择 00: VREF 续电在 CS 放电完即断开 01: VREF 续电保持。(建议值) 10: VREF 续电在 CS 放电完后继续维持 64 cycles 11: VREF 续电在 CS 放电完后继续维持 128 cycles

7 触摸键 8 位 MTP 类型单片机

12. 仿真注意事项

建议使用 PDK5S-I-S01 或 PDK5S-I-S02(B)仿真器。用 PDK5S-I-S01/2(B)仿真时,请注意以下几点:

- (1) 用 PDK5S-I-S01/2(B)仿真时,不支援 SYSCLK=ILRC/16 和 ILRC/2。
- (2) 用 PDK5S-I-S01/2(B)仿真时,不支援 PA5 当中断源。
- (3) 用PDK5S-I-S01/2(B)仿真时,不支援 GPC_PWM,TMx_source,TMx_bit,CS_SeI,Interrupt_Src0,PA3 PA4 Drive 等 code option。
- (4) 用 PDK5S-I-S01/2(B)仿真时,不支持 TM2C.GPCRS 和 TM3C.GPCRS
- (5) 用 PDK5S-I-S01/2(B)仿真时,不支援 PAPL、PBPL。
- (6) 用 PDK5S-I-S01/2(B)仿真时,不支持所有触摸功能。
- (7) 实际芯片的 TM2C PWM 输出是 PA0, PA3 和 PB0, 但在仿真器上是 PB2, PA3 和 PB4。
- (8) 实际芯片的 TM3C PWM 输出是 PA4, PA5 和 PB7, 但在仿真器上是 PB5, PB6 和 PB7。
- (9) 当 GPCS 选择 Output 到 PAO 输出时, PA3 的输出功能会受影响。
- (10) 仿真 PWM 波形时,建议用户在程序运行期间查看波形,当仿真器暂停或单步运行时波形可能会与实际不 符。
- (11) PDK5S-I-S01/2(B)仿真器的 ILRC 频率与实际 IC 不同,且未经校准,其频率范围大约在 34K~38KHz。
- (12) 快速唤醒时间和使用 PDK5S-I-S01/2(B)仿真不同 (PDK5S-I-S01/2(B): 128 SYSCLK, JZ8M117: 45 ILRC)
- (13) IC 的看门狗溢出时间和使用 PDK5S-I-S01/2(B)仿真不同,如下:

WDT 溢出时间	PDK5S-I-S01/2(B)	JZ8M117			
M/SC[1:0]=00	2048 * T _{ILRC}	8192 * T _{ILRC}			
M/SC[1:0]=01	4096 * T _{ILRC}	16384 * T _{ILRC}			
M/SC[1:0]=10	16384 * T _{ILRC}	65536 * T _{ILRC}			
M/SC[1:0]=11	256 * T _{ILRC}	262144 * T _{ILRC}			

13.烧录方法

请使用 PDK5S-P-003 进行烧录。PDK3S-P-002 或之前的Writer 版本皆已不支持烧录 JZ8M117。 Jumper 连接:可依照烧录器软件上的说明,连接 jumper 即可。 请用户依据实际情况选择以下两种烧录模式。

13.1. 普通烧录模式

适用范围:

单独封装 IC,并在烧录器的 IC 插座或连接分选机烧录。

合封(MCP)IC,但与 JZ8M117 合封的 IC 及元件不会被以下电压破坏,也不会钳制以下电压的产生。

普通烧录模式电压条件:

- (1) VDD 等于 7.5V, 而最大供给电流最高可达约 20mA。
- (2) PA5 等于 6V。
- (3) 其他烧录引脚(GND除外)等于 VDD。

重要提示:

如在 handler 上对 IC 进行烧录,请务必按照 APN004 及 APN011 的指示进行。

为对抗烧录时的杂讯干扰,请于烧录时在分选机连接 IC 连接器一端的 VDD 和 GND 之间连接 0.01uF 电容。但切忌连接标值 0.01uF 以上的电容,以免影响普通烧录模式的运行。

13.2. 限压烧录模式

适用范围:

在板烧录(On-board Writing),但其周边电路及组件不会被以下电压破坏,也不会钳制以下电压的产生。请参考在板烧录章节的详细说明。

合封(MCP)IC,但与 JZ8M117 合封的 IC 及元件不会被以下电压破坏,也不会钳制以下电压的产生。

限压烧录模式电压条件:

- (1) VDD 等于 5V, 而最大供给电流最高可达约 20mA。
- (2) PA5 等于 5V。
- (3) 其他烧录引脚(GND除外)等于 VDD。

7 触摸键 8 位 MTP 类型单片机

13.3. 在板烧录(On-Board Writing)

JZ8M117 可以支持在板烧录。所谓在板烧录,是指 IC 及其他周边电路及组件,皆已经焊接到 PCB 上,并对 IC 进行烧录的情况。在板烧录需要使用 PDK5S-P-003 上五根引线: ICPCK、ICPDA、VDD、GND 和 ICVPP,用于与 IC 上的 PA3、PA6、VDD、GND 和 PA5 对应相连。

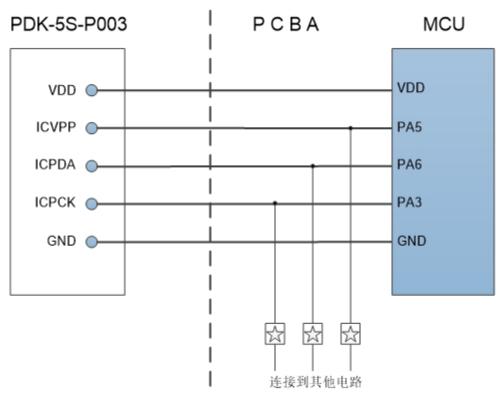


图 20: 在板烧录接线示意图

图 20 中的 ☆为电阻或电容,用于隔离烧录接线和其他电路。电阻应≥10KΩ,电容应≤220pF。

注意:

一般来说,在板烧录应使用限压烧录模式。请参考在限压烧录模式的详细说明。

PCB 上的 VDD 与 GND 之间不可连接有 5.0V 或以下的稳压二极管或其他钳制 5.0V 产生的电路或元件。 PCB 上的 VDD 与 GND 之间不可连接有标值 500uF 或以上的电容器。

一般来说,用于烧录讯号的 PA3, PA5 及 PA6 引脚,不能作为强输出脚。

14. 直流交流电气特性

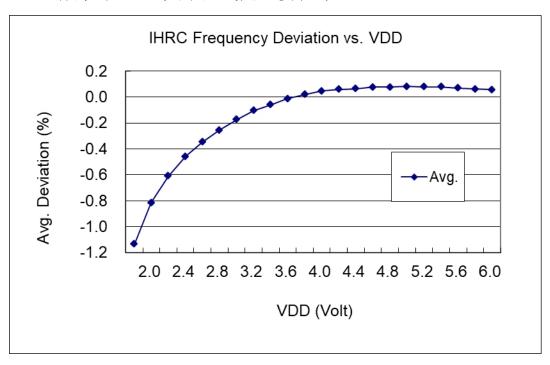
14.1. 绝对最大值

名称	最小值	典型值	最大值	单位	备 注
电源电压	0.0		F F	V	电源电压最大不能超过 5.5V, 否则可能损坏 IC
(VDD)	2.2		5.5	V	电源电压取入小能超过 3.34, 自则可能预外 10
输入电压	-0.3		V _{DD} + 0.3	V	
工作温度	-40		85	°C	
储藏温度	-50		125	°C	
节点温度		150		°C	

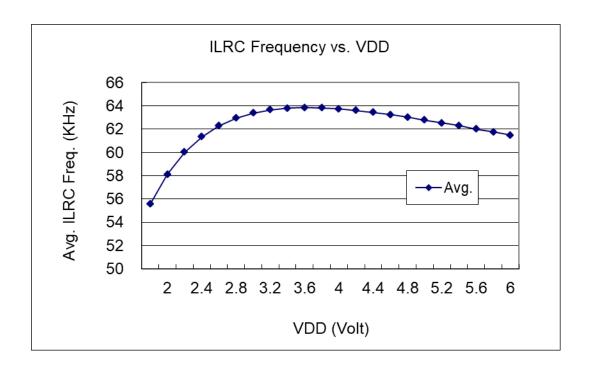
14.2. 器件电气特性

下列所有数据除特别列明外,皆于 V_{DD}=3.3V,f_{SYS}=2MHz 之条件下获得。

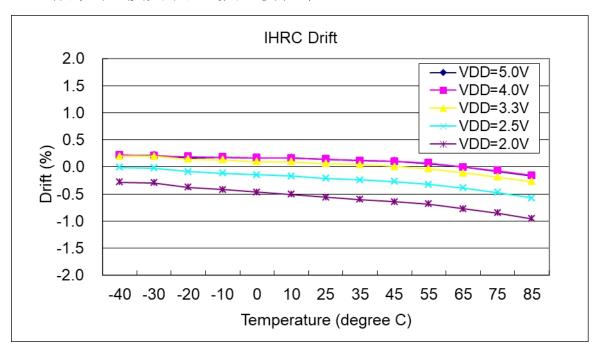
符号	特性	最小值	典型值	最大值	单位	条件(Ta=25°C)		
V_{DD}	工作电压	2.2*	5.0	5.5	V	* 受限于 LVR 公差		
LVR%	低电压复位公差	-5		5	%			
	系统时钟(CLK)* =							
	IHRC/2	0		8M		$V_{DD} \ge 3.5V$		
f _{SYS}	IHRC/4	0		4M	Hz	$V_{DD} \ge 2.5V$		
	IHRC/8	0		2M		$V_{DD} \ge 2.2V$		
	ILRC		64K			V _{DD} = 5.0V		
P _{cycle}	烧录次数	1000			cycles			
I _{OP}	工作电流		0.7		mA	f _{SYS} =IHRC/16=1MIPS@5.0V		
IOP			82		uA	f _{SYS} =ILRC=64KHz@5.0V		
I _{PD}	掉电模式消耗电流		1		uA	V _{DD} =5.0V		
טפי	(使用 stopsys 命令)		'		uA			
I _{PS}	省电模式消耗电流		3		uA	V_{DD} =5.0V; f_{SYS} = ILRC		
193	(使用 stopexe 命令)				G, (仅使用 ILRC 的模式下		
V _{IL}	输入低电压	0		0.1 V _{DD}	V			
V _{IH}	输入高电压	0.7 V _{DD}		V_{DD}	V			
	IO 输出灌电流 (Strong)							
	PA3/PA4		40					
I _{OL}	Others		23		mA	V_{DD} =5.0V, V_{OL} =0.5V		
	IO 输出灌电流 (Normal)		23					
	IO 输出驱动电流 (Strong)							
	PA3/PA4		20					
I _{OH}	Others		10		mA	V _{DD} =5.0V, V _{OH} =4.5V		
	IO 输出驱动电流 (Normal)		10		-			


符号	特性	最小值	典型值	最大值	单位	条件(Ta=25°C)
V _{IN}	输入电压	-0.3		V _{DD} +0.3	V	
I _{INJ (PIN)}	脚位的引入电流		1		uA	V_{DD} +0.3 \ge V_{IN} \ge -0.3
	上拉电阻					
R _{PH}	PA5		85		ΚΩ	V _{DD} =5.0V
	其他		80			
	下拉电阻					
R _{PL}	PA5		85		ΚΩ	V _{DD} =5.0V
	其他		80			
		15.84*	16*	16.16*		VDD=5V, Ta=25 °C
f _{IHRC}	IHRC 输出频率(校准后)*	15.20*	16*	40.00*	MHz	V _{DD} =2.2V~5.5V,
				16.80*		-40 °C <ta<85 *<="" td="" °c=""></ta<85>
t _{INT}	中断脉冲宽度	30			ns	V _{DD} = 5.0V
			8k			misc[1:0]=00(默认)
	 看门狗超时溢出时间		16k		_	misc[1:0]=01
t _{WDT}	有11%短时值山时间		64k		T _{ILRC}	misc[1:0]=10
			256k			misc[1:0]=11
t _{SBP}	系统上电开机时间		50		ms	@ V _{DD} =5V
t _{RST}	外部复位脉冲宽度	120			us	@ V _{DD} =5V
CPos	比较器偏压*	-	±10	±20	mV	
CPcm	比较器共模输入电压*	0		V _{DD} -1.5	V	
CPspt	比较器响应时间*		100	500	ns	上升沿和下降沿一样
CPmc	比较器模式改变稳定时间		2.5	7.5	us	
CPcs	比较器电流消耗		20		uA	V _{DD} = 3.3V

^{*}这些参数是设计参考值,并不是每个芯片测试。


特性图是实际测量值。考虑到生产飘移等因素的影响,表格中的数据是在实际测量值的安全范围内。

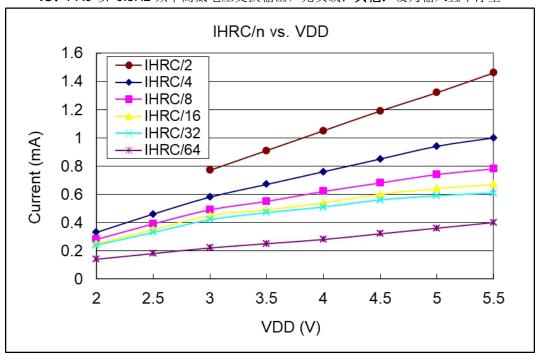
14.3. IHRC 频率与 VDD 关系曲线图(校准到 16MHz)

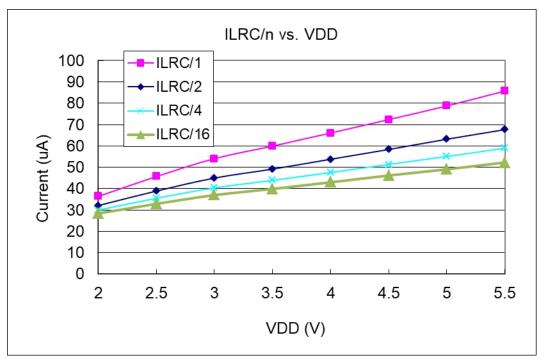


14.4. ILRC 频率与 VDD 关系曲线图



14.5. IHRC 频率与温度关系曲线图(校准到 16MHz)

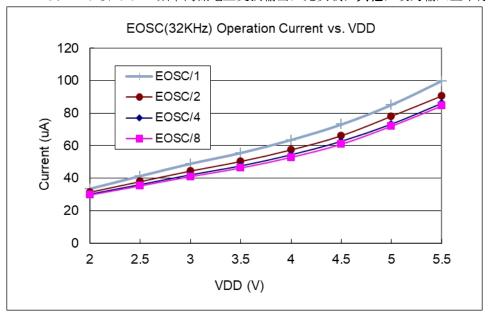

14.6. ILRC 频率与温度关系曲线图


14.7. 工作电流与 VDD、系统时钟 CLK = IHRC/n 关系曲线图

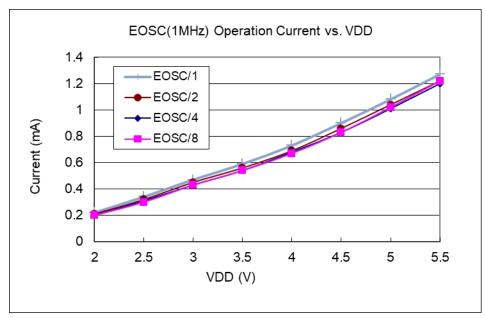
条件: 开启: IHRC, Bandgap, LVR; 关闭: T16, IHRC, Touch module; IO: PA0 以 0.5Hz 频率高低电压交换输出,无负载; **其他:** 设为输入且不浮空

14.8. 工作电流与 VDD、系统时钟 CLK = ILRC/n 关系曲线图

条件: 开启: ILRC, Bandgap, LVR; 关闭: T16, IHRC, Touch module; IO: PA0 以 0.5Hz 频率高低电压交换输出,无负载; 其他: 设为输入且不浮空

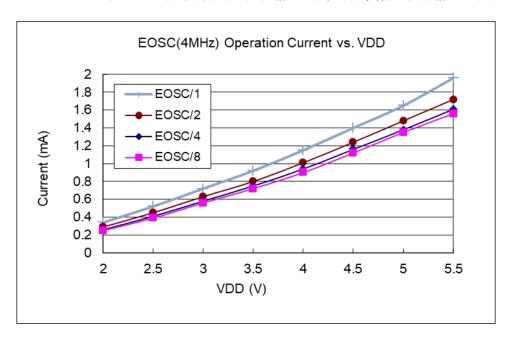


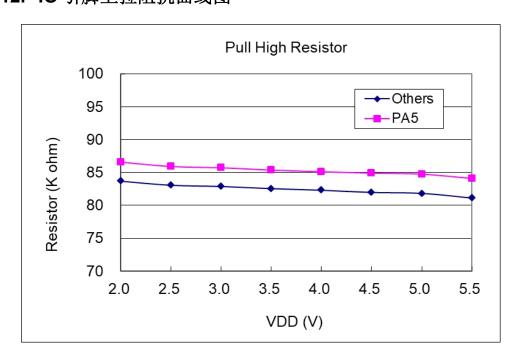
7 触摸键 8 位 MTP 类型单片机


14.9. 工作电流与VDD、系统时钟 CLK = 32KHz EOSC / n 关系曲线图

条件: **开启:** EOSC[6,5] = [0,1], Bandgap, LVR; **关闭:** T16, IHRC, Touch module; **IO:** PA0 以 0.5Hz 频率高低电压交换输出,无负载; **其他:** 设为输入且不浮空

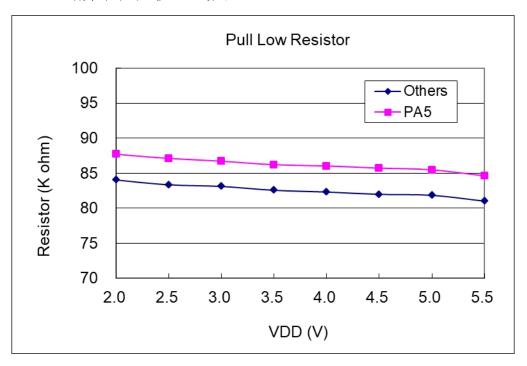
14.10. 工作电流与 VDD、系统时钟 CLK = 1MHz EOSC / n 关系曲线图


条件: 开启: EOSC[6,5] = [1,0], Bandgap, LVR; 关闭: T16, IHRC, Touch module; **IO:** PA0 以 0.5Hz 频率高低电压交换输出,无负载; **其他:** 设为输入且不浮空

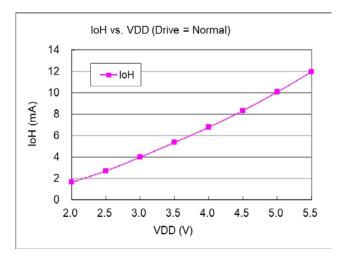


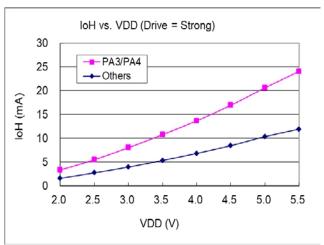
14.11. 工作电流与 VDD、系统时钟 CLK = 4MHz EOSC / n 关系曲线图

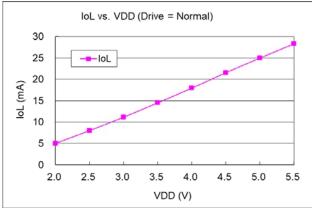
条件: **开启:** EOSC[6,5] = [1,1] , Bandgap, LVR; **关闭:** T16, IHRC, Touch module; **IO:** PA0 以 0.5Hz 频率高低电压交换输出,无负载; **其他:** 设为输入且不浮空

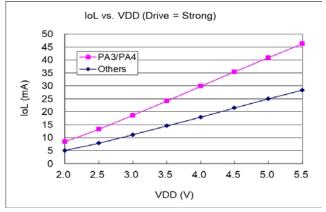


14.12. IO 引脚上拉阻抗曲线图

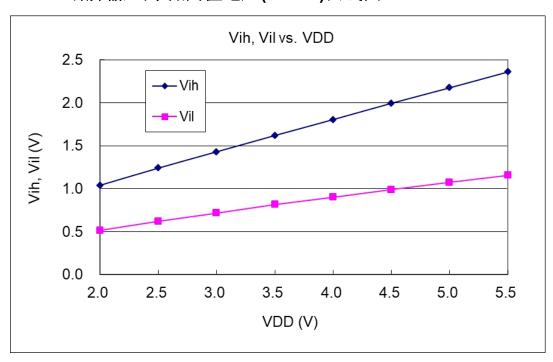


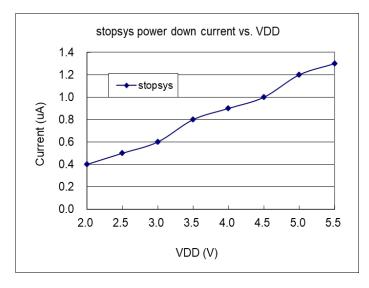


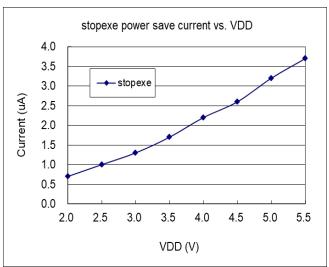

14.13. IO 引脚下拉阻抗曲线图



14.14. IO 引脚输出驱动电流(I_{OH}) 和灌电流 (I_{OL})曲线图 (VOH=0.9*VDD, VOL=0.1*VDD)







14.15. IO 引脚输入高/低阈值电压(VIH/VIL)曲线图

14.16. 掉电模式消耗电流(IPD)与省电模式消耗电流(IPS)曲线图

15.指令

符 号	描述
ACC	累加器(Accumulator 的缩写)
а	累加器(Accumulator 在程序里的代表符号)
SP	堆栈指针
FLAG	标志寄存器
I	即时数据
&	逻辑 AND
I	逻辑 OR
←	移动
٨	异或 OR
+	加
_	减
~	NOT (逻辑补数, 1 补数)
₹	2 补数
ov	溢出(2补数系统的运算结果超出范围)
Z	零(如果零运算单元操作的结果是 0,这位设置为 1)
С	进位(Carry)
AC	辅助进位标志(Auxiliary Carry)。
IO.n	寄存器的位
M.n	只允许寻址在 address 0~0x3F (0~63) 的位置

15.1. 指令表

指令	功能	周期	Z	С	AC	ov
数据传输类指令						
mov a, l	<i>mov</i> a, 0x0f; a ← 0fh;	1	-	-	-	-
mov M, a	mov MEM, a; MEM ← a	1	-	-	-	-
mov a, M	<i>mov</i> a, MEM; a ← MEM;当 MEM 为零时,标志位 Z 会被置位	1	Υ	-	-	-
mov a, IO	<i>mov</i> a, pa; a ← pa;当 pa 为零时,标志位 Z 会被置位	1	Υ	-	-	-
mov IO, a	mov pb, a; pb ← a;	1	-	-	-	-
<i>ldt16</i> word	<i>Idt16</i> word; word ← 16-bit timer	1	-	-	-	-
stt16 word	stt16 word; 16-bit timer ← word	1	-			-
idxm a, index	idxm a, index; a ← [index], index 是以 word 定义	2	-	1	-	-
idxm index, a	idxm index, a; [index] ← a; index 是以 word 定义	2	-	-	-	-
xch M	xch MEM; MEM ← a, a ← MEM	1	-	-	-	-
pushaf	<i>pushaf</i> ; [sp] ← {flag, ACC}; sp ← sp + 2;	1	-	-	-	-
popaf	<i>popaf;</i> sp ← sp - 2; {Flag, ACC} ← [sp];	1	Υ	Υ	Υ	Υ
算术运算类指令						
add a, I	add a, 0x0f; a ← a + 0fh	1	Υ	Υ	Υ	Υ
add a, M	add a, MEM; a ← a + MEM	1	Υ	Υ	Υ	Υ
add M, a	add MEM, a; MEM ← a + MEM	1	Υ	Υ	Υ	Υ
addc a, M	addc a, MEM ; a ← a + MEM + C	1	Υ	Υ	Υ	Υ
addc M, a	addc MEM, a ; MEM ← a + MEM + C	1	Υ	Υ	Υ	Υ
addc a	addc a; a ← a + C	1	Υ	Υ	Υ	Υ
addc M	addc MEM; MEM ← MEM + C	1	Υ	Υ	Υ	Υ
nadd a, M	nadd a, MEM; a ← 〒a + MEM	1	Υ	Υ	Υ	Υ
nadd M, a	nadd MEM, a; MEM ← 〒MEM + a	1	Υ	Υ	Υ	Υ
sub a, l	sub a, 0x0f; a ← a - 0fh (a + [2's complement of 0fh])	1	Υ	Υ	Υ	Υ
sub a, M	sub a, MEM; a ← a - MEM (a + [2's complement of M])	1	Υ	Υ	Υ	Υ
sub M, a	sub MEM, a; MEM ← MEM - a (MEM + [2's complement of a])	1	Υ	Υ	Υ	Υ
subc a, M	subc MEM, a; a ← a − MEM - C	1	Υ	Υ	Υ	Υ
subc M, a	subc MEM, a; MEM ← MEM – a - C	1	Υ	Υ	Υ	Υ
subc a	subc a; a ← a - C	1	Υ	Υ	Υ	Υ
subc M	subc MEM; MEM ← MEM - C	1	Υ	Υ	Υ	Υ
inc M	inc MEM; MEM ← MEM + 1	1	Υ	Υ	Υ	Υ
dec M	dec MEM; MEM ← MEM - 1	1	Υ	Υ	Υ	Υ
clear M	clear MEM; MEM ← 0	1	-	-	-	-

指令	功能	周期	Z	С	AC	ov			
移位运算类指令									
sr a	sr a; a (0,b7,b6,b5,b4,b3,b2,b1) ← a (b7,b6,b5,b4,b3,b2,b1,b0), C ← a(b0)	1	-	Υ	-	-			
src a	src a; a (c,b7,b6,b5,b4,b3,b2,b1) ← a (b7,b6,b5,b4,b3,b2,b1,b0), C ← a(b0)	1	-	Υ	-	-			
sr M	sr MEM; MEM(0,b7,b6,b5,b4,b3,b2,b1) \leftarrow MEM(b7,b6,b5,b4,b3,b2,b1,b0), C \leftarrow MEM(b0)	1	-	Υ	-	_			
src M	src MEM; MEM(c,b7,b6,b5,b4,b3,b2,b1) ← MEM (b7,b6,b5,b4,b3,b2,b1,b0), C ← MEM(b0)	1	-	Υ	-	-			
sl a	s/ a; a (b6,b5,b4,b3,b2,b1,b0,0) ← a (b7,b6,b5,b4,b3,b2,b1,b0), C ← a (b7)	1	-	Υ	-	-			
slc a	slc a; a (b6,b5,b4,b3,b2,b1,b0,c) ← a (b7,b6,b5,b4,b3,b2,b1,b0), C ← a(b7)	1	-	Υ	-	-			
s/ M	s/ MEM; MEM (b6,b5,b4,b3,b2,b1,b0,0) ← MEM (b7,b6,b5,b4,b3,b2,b1,b0), C ← MEM(b7)	1	-	Υ	-	-			
sic M	slc MEM ; MEM (b6,b5,b4,b3,b2,b1,b0,C) ← MEM (b7,b6,b5,b4,b3,b2,b1,b0), C ← MEM (b7)	1	-	Υ	-	-			
swap a	swap a ; a (b3,b2,b1,b0,b7,b6,b5,b4) ← a (b7,b6,b5,b4,b3,b2,b1,b0)	1	-	-	-	-			
逻辑运算类指令									
and a, I	and a, 0x0f; a ← a & 0fh	1	Υ	-	-	-			
and a, M	and a, RAM10 ; a ← a & RAM10	1	Υ	-	-	-			
and M, a	and MEM, a; MEM ← a & MEM	1	Υ	-	-	-			
or a, I	or a, 0x0f; a ← a 0fh	1	Υ	-	-	-			
or a, M	or a, MEM ; a ← a MEM	1	Υ		-	-			
or M, a	or MEM, a; MEM ← a MEM	1	Υ	-	-	-			
xor a, l	xor a, 0x0f; a ← a ^ 0fh	1	Υ	-	-	-			
xor IO, a	xor pa, a; pa ← a ^ pa;	1	-	-	-	-			
xor a, M	xor a, MEM; a ← a ^ RAM10	1	Υ	-	-	-			
xor M, a	xor MEM, a; MEM ← a ^ MEM	1	Υ	-	-	-			
not a	not a; a ← ∽ a	1	Υ	-	-	-			
not M	not MEM; MEM ← ∽ MEM	1	Υ	-	-	-			
neg a	neg a; a ←a 的 2 补码	1	Υ	-	-	-			
neg M	neg MEM; MEM ← MEM 的 2 补码	1	Υ	-	-	-			
comp a, M	comp a,MEM; 等效于(a - MEM),并改变标志位 Flag	1	Υ	Υ	Υ	Υ			
comp M, a	comp MEM,a; 等效于(MEM - a),并改变标志位 Flag	1	Υ	Υ	Υ	Υ			

指令	功能	周期	z	С	AC	ov			
位运算类指令									
set0 IO.n	set0 pa.5; PA5=0	1	-	-	-	-			
set1 IO.n	set1 pb.5; PB5=1	1	-	-	-	-			
set0 M.n	set0 MEM.5; MEM 位 5 为 0	1	-	-	-	-			
set1 M.n	set1 MEM.5; MEM 位 5 为 1	1	-	-	-	-			
swapc IO.n	swapc IO.0;	1	-	Υ	-	-			
条件运算类指令									
ceqsn a, l	ceqsn a, 0x55; <i>inc</i> MEM; <i>goto</i> error; 假如 a=0x55, then "goto error";否则,"inc MEM".	1/2	Υ	Υ	Υ	Υ			
ceqsn a, M	ceqsn a, MEM; 假如 a=MEM,跳过下一个指令	1/2	Υ	Υ	Υ	Υ			
cneqsn a, M	cneqsn a, MEM; 假如 a≠MEM,跳过下一个指令	1/2	Υ	Υ	Υ	Υ			
cneqsn a, I	cneqsn a, 0x55; inc MEM; goto error; 假如 a≠0x55, then "goto error";否则, "inc MEM".	1/2	Υ	Υ	Υ	Υ			
t0sn IO.n	<i>t0sn</i> pa.5; 如果 PA5 是 0,跳过下一个指令	1/2	-	-	-	-			
t1sn IO.n	<i>t1sn</i> pa.5; 如果 PA5 是 1, 跳过下一个指令	1/2	-	-	-	-			
t0sn M.n	<i>t0sn</i> MEM.5; 如果 MEM 的位 5 是 0, 跳过下一个指令	1/2	-	-	-	-			
t1sn M.n	<i>t1sn</i> MEM.5; 如果 MEM 的位 5 是 1, 跳过下一个指令	1/2	-	-	-	-			
izsn a	<i>izsn</i> a; a ← a + 1,若 a=0,跳过下一个指令	1/2	Υ	Υ	Υ	Υ			
dzsn a	<i>dzsn</i> a; a ← a – 1,若 a=0,跳过下一个指令	1/2	Υ	Υ	Υ	Υ			
izsn M	<i>izsn</i> MEM; MEM ← MEM + 1,若 MEM=0,跳过下一个指令	1/2	Υ	Υ	Υ	Υ			
dzsn M	dzsn MEM; MEM ← MEM - 1,若 MEM=0,跳过下一个指令	1/2	Υ	Υ	Υ	Υ			
系统控制类指令	•								
call label	call function1; [sp] \leftarrow pc + 1, pc \leftarrow function1, sp \leftarrow sp + 2	2	-	-	-	-			
goto label	goto error; 跳到 error 并继续执行程序	2	-	-	-	-			
ret I	ret 0x55; A ← 55h ret;	2	-	-	-	-			
ret	ret; sp \leftarrow sp - 2 pc \leftarrow [sp]	2	-	-	-	-			
reti	reti; 从中断服务程序返回到原程序。 在这指令执行之后,全部中断将自动启用	2	-	-	-	-			
пор	nop; 没任何改变	1	-	-	-	-			
pcadd a	pcadd a; pc ← pc + a	2	-	-	-	-			
engint	engint; 中断要求可送到 FPP0,以便进行中断服务	1	-	-	-	-			
disgint	disgint; 送到 FPP0 的中断要求全部被挡住,无法进行中断服务	1	-	-	-	-			
stopsys	stopsys; 停止系统时钟和关闭系统	1	-	-	-	-			
stopexe	stopexe; 停住系统时钟,但是仍保持震荡器模块工作	1	-	-	-	-			
reset	reset; 复位整个单片机	1	-	-	-	-			
wdreset	wdreset; 复位看门狗	1	-	-	-	-			